scholarly journals Time-dependent Seismic Footprint of Thermal Loading for Geothermal Activities in Fractured Carbonate Reservoirs

2021 ◽  
Vol 9 ◽  
Author(s):  
B. B. T. Wassing ◽  
T. Candela ◽  
S. Osinga ◽  
E. Peters ◽  
L. Buijze ◽  
...  

This paper describes and deploys a workflow to assess the evolution of seismicity associated to injection of cold fluids close to a fault. We employ a coupled numerical thermo-hydro-mechanical simulator to simulate the evolution of pressures, temperatures and stress on the fault. Adopting rate-and-state seismicity theory we assess induced seismicity rates from stressing rates at the fault. Seismicity rates are then used to derive the time-dependent frequency-magnitude distribution of seismic events. We model the seismic response of a fault in a highly fractured and a sparsely fractured carbonate reservoir. Injection of fluids into the reservoir causes cooling of the reservoir, thermal compaction and thermal stresses. The evolution of seismicity during injection is non-stationary: we observe an ongoing increase of the fault area that is critically stressed as the cooling front propagates from the injection well into the reservoir. During later stages, models show the development of an aseismic area surrounded by an expanding ring of high seismicity rates at the edge of the cooling zone. This ring can be related to the “passage” of the cooling front. We show the seismic response of the fault, in terms of the timing of elevated seismicity and seismic moment release, depends on the fracture density, as it affects the temperature decrease in the rock volume and thermo-elastic stress change on the fault. The dense fracture network results in a steeper thermal front which promotes stress arching, and leads to locally and temporarily high Coulomb stressing and seismicity rates. We derive frequency-magnitude distributions and seismic moment release for a low-stress subsurface and a tectonically active area with initially critically stressed faults. The evolution of seismicity in the low-stress environment depends on the dimensions of the fault area that is perturbed by the stress changes. The probability of larger earthquakes and the associated seismic risk are thus reduced in low-stress environments. For both stress environments, the total seismic moment release is largest for the densely spaced fracture network. Also, it occurs at an earlier stage of the injection period: the release is more gradually spread in time and space for the widely spaced fracture network.

2020 ◽  
Vol 8 (4) ◽  
pp. SP109-SP133 ◽  
Author(s):  
Heloise Bloxsom Lynn ◽  
Bill Goodway

A 3D P-P high-fold full-azimuth full-offset reflection survey was acquired and processed to characterize a naturally fractured carbonate reservoir. The reservoir is a thick carbonate, which will flow commercial oil with a sufficient fracture network. Extensive calibration data include (1) a horizontal borehole’s resistivity image log, (2) the first 24 months cumulative oil produced, by stage, as known from chemical frac tracer data, (3) pre- and postfrac job instantaneous shut-in pressures, (4) microseismic, and (5) wireline log data. We used the cumulative oil production to document the spatially varying amount of aligned vertical porosity (aligned compliance or fracture porosity) connected to the stage borehole location. The stages of high oil production exhibited, for the fracture-perpendicular azimuth, the more positive amplitude variation with angle (AVA) gradients, and dimmer near-angle (6°–15° angles of incidence) amplitudes, compared to the fracture-parallel azimuth. The azimuthal variation of the AVA gradient fit the cos 2θ curve well, indicating the presence of one set of vertical aligned fractures dominating the azimuthal amplitude signature. In a similar fashion, the azimuthal variation of the mathematical intercept, physically the near-angle amplitudes, also fit the cos 2θ curve well. We have constructed crossplots of the azimuthal near-angle amplitude versus the AVA gradient on a bin-by-bin basis: we observed a straight line at bins with elevated oil production (elevated fracture density). A straight line crossplot of the (AVA gradient, mathematical intercept) is the signature of change of the (sensed) porosity, as long as the lithology and pore fluid are held constant. In accord with industry knowledge, we found that porosity affects the P impedance and thus the near-angle amplitudes: the aligned porosity yields azimuthal P impedance (measured at the 6°–15° angles of incidence). Legacy high-fold 3D P-P surveys rich in the 6°–20° angles of incidence should be considered for reprocessing and reinterpretation using these techniques.


Fluids ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 52 ◽  
Author(s):  
José Carlos de Dios ◽  
Yann Le Gallo ◽  
Juan Andrés Marín

Carbon sequestration in deep saline aquifers was recently developed at the industrial scale. CO2 injection experiences in carbonates are quite limited, most of them coming from projects carried out in porous mediums in the USA and Canada. Hontomín (Spain) is the actual on-shore injection pilot in Europe, being a naturally fractured carbonate reservoir where innovative CO2 injection strategies are being performed within the ENOS Project. CO2 migration through the fracture network existing on site produces hydrodynamic, mechanical and geochemical effectsdifferent from those caused by the injection in mediums with a high matrix permeability. The interpretation of these effects is required to design safe and efficient injection strategies in these formations. For this, it is necessary to determine the evolution of pressure, temperature and flow rate during the injection, as well as the period of pressure recovery during the fall-off phase. The first results from the not-continuous injections (8–24 h) conducted at Hontomín reveal the injection of liquid CO2 (density value of 0.828 t/m3) and the fluid transmissivity through the fractures. Taking into account the evolution of the pressure and flow rate showed variations of up to 23% and 30% respectively, which means that the relevant changes of injectivity took place. The results were modeled with a compositional dual media model which accounts for both temperature effects and multiphase flow hysteresis because alternative brine and CO2 injections were conducted. Advanced modeling shows the lateral extension of CO2 and the temperature disturbance away from the well.


2020 ◽  
Author(s):  
Bilal Amjad ◽  
Oloruntoba Ogunsanwo ◽  
Mustafa Bawazir ◽  
Nabil Batita ◽  
Mohammed Siddiqui

Sign in / Sign up

Export Citation Format

Share Document