scholarly journals The Origin of Silica of Marine Shale in the Upper Ordovician Wulalike Formation, Northwestern Ordos Basin, North China

2021 ◽  
Vol 9 ◽  
Author(s):  
Yanni Zhang ◽  
Rongxi Li ◽  
Hexin Huang ◽  
Tian Gao ◽  
Lei Chen ◽  
...  

The shale of the Wulalike Formation developed in the northwestern Ordos Basin is considered to be an effective marine hydrocarbon source rock. One of the key factors for successful shale gas exploration in the Wufeng–Longmaxi Formation in the Sichuan Basin is the high content of biogenic silica. However, few people have studied the siliceous origin of the Wulalike shale. In this study, we used petrographic observation and element geochemistry to analyze the origin of silica in the Wulalike shale. The results show that the siliceous minerals are not affected by hydrothermal silica and mainly consist of biogenic and detrital silica. A large number of siliceous organisms, such as sponge spicules, radiolarians, and algae, are found under the microscope. It has been demonstrated that total organic carbon has a positive correlation with biogenic silica and a negative correlation with detrital silica, and biogenic silica is one of the effective indicators of paleoproductivity. Therefore, the enrichment of organic matter may be related to paleoproductivity. Through the calculation of element logging data in well A, it is found that biogenic silica is mainly distributed in the bottom of the Wulalike Formation, and the content of biogenic silica decreases, while the content of detrital silica increases upward of the Wulalike Formation. Biogenic silica mainly exists in the form of microcrystalline quartz, which can form an interconnected rigid framework to improve the hardness and brittleness of shale. Meanwhile, biogenic microcrystalline quartz can protect organic pores from mechanical compaction. Therefore, it may be easier to fracture the shale gas at the bottom of the Wulalike Formation in well A.

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Tao Jiang ◽  
Zhijun Jin ◽  
Zongquan Hu ◽  
Wei Du ◽  
Zhongbao Liu ◽  
...  

Organic pores play an important role in shale reservoirs. Organic pores occur where shale gas was produced and accumulated. However, there is little scientific understanding of the distribution and connectivity of organic pores. Organic pore types and their structural characteristics were studied using a total organic carbon (TOC), thin section, focused ion beam scanning electron microscope (FIB-SEM), and nano-CT. The samples were from the Wufeng Formation in the Upper Ordovician and Longmaxi Formations from the lower Silurian. The results show that organic matter is mainly concentrated in the Wufeng Formation and the bottom of the Longmaxi Formation and that the middle and upper parts of the Longmaxi Formation contain a low amount of organic matter. The shale of the Wufeng-Longmaxi Formation has high maturity, and its organic pores are well developed. There are three types of organic pores: algae, graptolite, and pyrobitumen pores. The pore connectivity of shale with a high organic content is better than that of shale with a low organic content. The volume of the organic pores accounts for more than 50% of the volume of the organic matter. Majority of the organic pores have an aperture smaller than 100 nm and are round, nearly circular, and elliptical in morphology. Most of the organic pores in a shale formation are developed in pyrobitumen, and most of the larger organic pores are concentrated at the center of solid pyrobitumen. The organic pores in pyrobitumen have the best connectivity and are the most favorable reservoir spaces and migration channels for shale gas, which is a crucial point of reference for future research of shale gas.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2679
Author(s):  
Yuying Zhang ◽  
Shu Jiang ◽  
Zhiliang He ◽  
Yuchao Li ◽  
Dianshi Xiao ◽  
...  

In order to analyze the main factors controlling shale gas accumulation and to predict the potential zone for shale gas exploration, the heterogeneous characteristics of the source rock and reservoir of the Wufeng-Longmaxi Formation in Sichuan Basin were discussed in detail, based on the data of petrology, sedimentology, reservoir physical properties and gas content. On this basis, the effect of coupling between source rock and reservoir on shale gas generation and reservation has been analyzed. The Wufeng-Longmaxi Formation black shale in the Sichuan Basin has been divided into 5 types of lithofacies, i.e., carbonaceous siliceous shale, carbonaceous argillaceous shale, composite shale, silty shale, and argillaceous shale, and 4 types of sedimentary microfacies, i.e., carbonaceous siliceous deep shelf, carbonaceous argillaceous deep shelf, silty argillaceous shallow shelf, and argillaceous shallow shelf. The total organic carbon (TOC) content ranged from 0.5% to 6.0% (mean 2.54%), which gradually decreased vertically from the bottom to the top and was controlled by the oxygen content of the bottom water. Most of the organic matter was sapropel in a high-over thermal maturity. The shale reservoir of Wufeng-Longmaxi Formation was characterized by low porosity and low permeability. Pore types were mainly <10 nm organic pores, especially in the lower member of the Longmaxi Formation. The size of organic pores increased sharply in the upper member of the Longmaxi Formation. The volumes of methane adsorption were between 1.431 m3/t and 3.719 m3/t, and the total gas contents were between 0.44 m3/t and 5.19 m3/t, both of which gradually decreased from the bottom upwards. Shale with a high TOC content in the carbonaceous siliceous/argillaceous deep shelf is considered to have significant potential for hydrocarbon generation and storage capacity for gas preservation, providing favorable conditions of the source rock and reservoir for shale gas.


2020 ◽  
Vol 11 (1) ◽  
pp. 219
Author(s):  
Jing Zeng ◽  
Alexey Stovas ◽  
Handong Huang ◽  
Lixia Ren ◽  
Tianlei Tang

Paleozoic marine shale gas resources in Southern China present broad prospects for exploration and development. However, previous research has mostly focused on the shale in the Sichuan Basin. The research target of this study is expanded to the Lower Silurian Longmaxi shale outside the Sichuan Basin. A prediction scheme of shale gas reservoirs through the frequency-dependent seismic attribute technology is developed to reduce drilling risks of shale gas related to complex geological structure and low exploration level. Extracting frequency-dependent seismic attribute is inseparable from spectral decomposition technology, whereby the matching pursuit algorithm is commonly used. However, frequency interference in MP results in an erroneous time-frequency (TF) spectrum and affects the accuracy of seismic attribute. Firstly, a novel spectral decomposition technology is proposed to minimize the effect of frequency interference by integrating the MP and the ensemble empirical mode decomposition (EEMD). Synthetic and real data tests indicate that the proposed spectral decomposition technology provides a TF spectrum with higher accuracy and resolution than traditional MP. Then, a seismic fluid mobility attribute, extracted from the post-stack seismic data through the proposed spectral decomposition technology, is applied to characterize the shale reservoirs. The application result indicates that the seismic fluid mobility attribute can describe the spatial distribution of shale gas reservoirs well without well control. Based on the seismic fluid mobility attribute section, we have learned that the shale gas enrich areas are located near the bottom of the Longmaxi Formation. The inverted velocity data are also introduced to further verify the reliability of seismic fluid mobility. Finally, the thickness map of gas-bearing shale reservoirs in the Longmaxi Formation is obtained by combining the seismic fluid mobility attribute with the inverted velocity data, and two favorable exploration areas are suggested by analyzing the thickness, structure, and burial depth. The present work can not only be used to evaluate shale gas resources in the early stage of exploration, but also help to design the landing point and trajectory of directional drilling in the development stage.


Sign in / Sign up

Export Citation Format

Share Document