scholarly journals Editorial: Early Avian Evolution

2021 ◽  
Vol 9 ◽  
Author(s):  
Jingmai Kathleen O’Connor ◽  
Daniel J. Field ◽  
Corwin Sullivan
Keyword(s):  
Science ◽  
2021 ◽  
Vol 373 (6551) ◽  
pp. 226-231 ◽  
Author(s):  
Yasuka Toda ◽  
Meng-Ching Ko ◽  
Qiaoyi Liang ◽  
Eliot T. Miller ◽  
Alejandro Rico-Guevara ◽  
...  

Early events in the evolutionary history of a clade can shape the sensory systems of descendant lineages. Although the avian ancestor may not have had a sweet receptor, the widespread incidence of nectar-feeding birds suggests multiple acquisitions of sugar detection. In this study, we identify a single early sensory shift of the umami receptor (the T1R1-T1R3 heterodimer) that conferred sweet-sensing abilities in songbirds, a large evolutionary radiation containing nearly half of all living birds. We demonstrate sugar responses across species with diverse diets, uncover critical sites underlying carbohydrate detection, and identify the molecular basis of sensory convergence between songbirds and nectar-specialist hummingbirds. This early shift shaped the sensory biology of an entire radiation, emphasizing the role of contingency and providing an example of the genetic basis of convergence in avian evolution.


Paleobiology ◽  
1990 ◽  
Vol 16 (2) ◽  
pp. 170-186 ◽  
Author(s):  
Stephen M. Gatesy

Living crocodilians and limbed lepidosaurs have a large caudofemoralis longus muscle passing from tail to femur. Anatomical and electromyographic data support the conclusion that the caudofemoralis is the principal femoral retractor and thus serves as the primary propulsive muscle of the hind limb. Osteological evidence of both origin and insertion indicates that a substantial caudofemoralis longus was present in archosaurs primitively and was retained in the clades Dinosauria and Theropoda. Derived theropods (e.g., ornithomimids, deinonychosaurs, Archaeopteryx and birds) exhibit features that indicate a reduction in caudofemoral musculature, including fewer caudal vertebrae, diminished caudal transverse processes, distal specialization of the tail, and loss of the fourth trochanter. This trend culminates in ornithurine birds, which have greatly reduced tails and either have a minute caudofemoralis longus or lack the muscle entirely.As derived theropod dinosaurs, birds represent the best living model for reconstructing extinct nonavian theropods. Bipedal, digitigrade locomotion on fully erect limbs is an avian feature inherited from theropod ancestors. However, the primitive saurian mechanisms of balancing the body (with a large tail) and retracting the limb (with the caudofemoralis longus) were abandoned in the course of avian evolution. This strongly suggests that details of the orientation (subhorizontal femur) and movement (primarily knee flexion) of the hind limb in extant birds are more properly viewed as derived, uniquely avian conditions, rather than as retentions of an ancestral dinosaurian pattern. Although many characters often associated with extant birds appeared much earlier in theropod evolution, reconstructing the locomotion of all theropods as completely birdlike ignores a wealth of differences that characterize birds.


2016 ◽  
Author(s):  
Aurélie Kapusta ◽  
Alexander Suh ◽  
Cédric Feschotte

AbstractGenome size in mammals and birds shows remarkably little interspecific variation compared to other taxa. Yet, genome sequencing has revealed that many mammal and bird lineages have experienced differential rates of transposable element (TE) accumulation, which would be predicted to cause substantial variation in genome size between species. Thus, we hypothesize that there has been co-variation between the amount of DNA gained by transposition and lost by deletion during mammal and avian evolution, resulting in genome size homeostasis. To test this model, we develop a computational pipeline to quantify the amount of DNA gained by TE expansion and lost by deletion over the last 100 million years (My) in the lineages of 10 species of eutherian mammals and 24 species of birds. The results reveal extensive variation in the amount of DNA gained via lineage-specific transposition, but that DNA loss counteracted this expansion to various extent across lineages. Our analysis of the rate and size spectrum of deletion events implies that DNA removal in both mammals and birds has proceeded mostly through large segmental deletions (>10 kb). These findings support a unified ‘accordion’ model of genome size evolution in eukaryotes whereby DNA loss counteracting TE expansion is a major determinant of genome size. Furthermore, we propose that extensive DNA loss, and not necessarily a dearth of TE activity, has been the primary force maintaining the greater genomic compaction of flying birds and bats relative to their flightless relatives.


1993 ◽  
Vol 176 (1) ◽  
pp. 55-76 ◽  
Author(s):  
S. M. Gatesy ◽  
K. P. Dial

The electrical activity of major caudal muscles of the pigeon (Columba livia) was recorded during five modes of aerial and terrestrial locomotion. Tail muscle electromyograms were correlated with movement using high-speed cinematography and compared to activity in selected muscles of the wings, legs and trunk. During walking, the pectoralis and most tail muscles are normally inactive, but levator muscle activity alternates with the striding legs. In flight, caudal muscles are phasically active with each wingbeat and undergo distinct changes in electromyographic pattern between liftoff, takeoff, slow level flapping and landing modes. The temporal flexibility of tail muscle activity differs significantly from the stereotypic timing of wing muscles in pigeons performing the same flight modes. These neural programs may represent different solutions to the control of flight surfaces in the rapidly oscillating wing and the relatively stationary caudal skeleton. Birds exhibit a novel alliance of tail and forelimb use during aerial locomotion. We suggest that there is evidence of anatomical and functional decoupling of the tail from adjacent hindlimb and trunk muscles during avian evolution to facilitate its specialization for rectricial control in flight.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Alida M. Bailleul ◽  
Jingmai O’Connor ◽  
Zhiheng Li ◽  
Qian Wu ◽  
Tao Zhao ◽  
...  

AbstractThe remains of ovarian follicles reported in nine specimens of basal birds represents one of the most remarkable examples of soft-tissue preservation in the Early Cretaceous Jehol Biota. This discovery was immediately contested and the structures alternatively interpreted as ingested seeds. Fragments of the purported follicles preserved in an enantiornithine (STM10-12) were extracted and subjected to multiple high-resolution analyses. The structures in STM10-12 possess the histological and histochemical characteristics of smooth muscles fibers intertwined together with collagen fibers, resembling the contractile structure in the perifollicular membrane (PFM) of living birds. Fossilized blood vessels, very abundant in extant PFMs, are also preserved. Energy Dispersive Spectroscopy shows the preserved tissues primarily underwent alumino-silicification, with minor mineralization via iron oxides. No evidence of plant tissue was found. These results confirm the original interpretation as follicles within the left ovary, supporting the interpretation that the right ovary was functionally lost early in avian evolution.


The Auk ◽  
2019 ◽  
Vol 136 (4) ◽  
Author(s):  
Erik R Funk ◽  
Scott A Taylor

Abstract Avian evolution has generated an impressive array of patterns and colors in the ~10,000 bird species that exist on Earth. Recently, a number of exciting studies have utilized whole-genome sequencing to reveal new details on the genetics of avian plumage color. These findings provide compelling evidence for genes that underlie plumage variation across a wide variety of bird species (e.g., juncos, warblers, seedeaters, and estrildid finches). While much is known about large, body-wide color changes, these species exhibit discrete color differences across small plumage patches. Many genetic differences appear to be located in regulatory regions of genes rather than in protein-coding regions, suggesting gene expression is playing a large role in the control of these color patches. Taken together, these studies have the potential to broadly facilitate further research of sexual selection and evolution in these charismatic taxa.


Diversity ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 178
Author(s):  
Peter Houde

“Genomic Analyses of Avian Evolution” is a “state of the art” showcase of the varied and rapidly evolving fields of inquiry enabled and driven by powerful new methods of genome sequencing and assembly as they are applied to some of the world’s most familiar and charismatic organisms—birds. The contributions to this Special Issue are as eclectic as avian genomics itself, but loosely interrelated by common underpinnings of phylogenetic inference, de novo genome assembly of non-model species, and genome organization and content.


Nature ◽  
2001 ◽  
Vol 414 (6863) ◽  
pp. 507-508 ◽  
Author(s):  
Alan Feduccia
Keyword(s):  

PLoS ONE ◽  
2012 ◽  
Vol 7 (6) ◽  
pp. e39056 ◽  
Author(s):  
Neil Brocklehurst ◽  
Paul Upchurch ◽  
Philip D. Mannion ◽  
Jingmai O'Connor

Sign in / Sign up

Export Citation Format

Share Document