scholarly journals Summer Cyclones and Their Association With Short-Term Sea Ice Variability in the Pacific Sector of the Arctic

2021 ◽  
Vol 9 ◽  
Author(s):  
Peter M. Finocchio ◽  
James D. Doyle

We investigate the effects of summer cyclones on sea ice within the Pacific sector of the Arctic by analyzing the surface energy flux and wind forcing from a large sample of cyclones. Consistent with recent studies, we find that cyclones earlier in the melt season tend to be associated with less 1–5 day sea ice loss than what occurs in the absence of cyclones. In contrast, cyclones later in the melt season slightly accelerate the 1-day sea ice loss. The reduced ice loss following cyclones in June is primarily due to increased cloud cover reducing the net shortwave flux at the surface. Clouds associated with cyclones in July and August also reduce the net shortwave flux at the surface, but only over high-concentration sea ice. Southerly winds associated with August cyclones increase both the negative local sea ice advection and the surface heat flux, particularly for the low concentration sea ice that is prevalent in August. Sea ice advection and surface heat flux are the only two factors we examined that can explain the enhanced ice loss on cyclone days in August. We also examined two cyclone cases that impacted sea ice in the East Siberian Sea in June 2012 and August 2016, and found for both cyclones that the sensible heat flux is the largest positive anomalous forcing and the shortwave radiative flux is the largest negative anomalous forcing. Similar to the large sample of cyclones, the shortwave flux has a stronger relationship to local changes in SIC in June than in August. Part of the reason for this is that the cloud shortwave radiative forcing during the August cyclone is 26% weaker than during the June cyclone. In an area averaged sense, the anomalous surface energy and wind forcing of both cyclone cases is similar in magnitude, yet the August cyclone is followed by a greater reduction in both sea ice area and mean sea ice concentration than the June cyclone. This result emphasizes how the underlying sea ice characteristics largely determine cyclone impacts on sea ice on short time scales.

1997 ◽  
Vol 25 ◽  
pp. 327-332 ◽  
Author(s):  
Marika M. Holland ◽  
Julie L. Schramm ◽  
Judith A. Curry

Due to large uncertainties in many of the parameters used to model sea ice, it is possible that models with significantly different physical processes can be tuned to obtain realistic present-day simulations. However, in studies of climate change, it is the response of the model it various perturbations that is important, in studies response can be significantly different in sea-ice models that include or exclude various physical feedback mechanisms. Because simplifications in sea-ice physics are necessary for general circulation model experiments, it is important to assess which physical processes are essential for the accurate determination of the sensitivity of the ice pack to climate perturbations. We have attempted to address these issues using a new coupled ice-thickness distribution ocean mixed-layer model. The sensitivity of the model to surface heat-flux perturbations is examined and the importance of the ice ocean and ice-albedo feedback mechanisms in determining this sensitivity is analyzed. We find that the ice ocean and ice-albedo feedback processes are not mutually exclusive, and that they both significantly alter the model response to surface heat flux perturbations.


2020 ◽  
Vol 54 (3-4) ◽  
pp. 1937-1952
Author(s):  
James O. Pope ◽  
Thomas J. Bracegirdle ◽  
Ian A. Renfrew ◽  
Andrew D. Elvidge

2015 ◽  
Vol 29 (1) ◽  
pp. 331-346 ◽  
Author(s):  
Steffen Tietsche ◽  
Ed Hawkins ◽  
Jonathan J. Day

Abstract Uncertainty of Arctic seasonal to interannual predictions arising from model errors and initial state uncertainty has been widely discussed in the literature, whereas the irreducible forecast uncertainty (IFU) arising from the chaoticity of the climate system has received less attention. However, IFU provides important insights into the mechanisms through which predictability is lost and hence can inform prioritization of model development and observations deployment. Here, the authors characterize how internal oceanic and surface atmospheric heat fluxes contribute to the IFU of Arctic sea ice and upper-ocean heat content in an Earth system model by analyzing a set of idealized ensemble prediction experiments. It is found that atmospheric and oceanic heat flux are often equally important for driving unpredictable Arctic-wide changes in sea ice and surface water temperatures and hence contribute equally to IFU. Atmospheric surface heat flux tends to dominate Arctic-wide changes for lead times of up to a year, whereas oceanic heat flux tends to dominate regionally and on interannual time scales. There is in general a strong negative covariance between surface heat flux and ocean vertical heat flux at depth, and anomalies of lateral ocean heat transport are wind driven, which suggests that the unpredictable oceanic heat flux variability is mainly forced by the atmosphere. These results are qualitatively robust across different initial states, but substantial variations in the amplitude of IFU exist. It is concluded that both atmospheric variability and the initial state of the upper ocean are key ingredients for predictions of Arctic surface climate on seasonal to interannual time scales.


2013 ◽  
Vol 43 (11) ◽  
pp. 2352-2371 ◽  
Author(s):  
Michael A. Spall

Abstract An idealized eddy-resolving numerical model and an analytic three-layer model are used to develop ideas about what controls the circulation of Atlantic Water in the Arctic Ocean. The numerical model is forced with a surface heat flux, uniform winds, and a source of low-salinity water near the surface around the perimeter of an Arctic basin. Despite this idealized configuration, the model is able to reproduce many general aspects of the Arctic Ocean circulation and hydrography, including exchange through Fram Strait, circulation of Atlantic Water, a halocline, ice cover and transport, surface heat flux, and a Beaufort Gyre. The analytic model depends on a nondimensional number, and provides theoretical estimates of the halocline depth, stratification, freshwater content, and baroclinic shear in the boundary current. An empirical relationship between freshwater content and sea surface height allows for a prediction of the transport of Atlantic Water in the cyclonic boundary current. Parameters typical of the Arctic Ocean produce a cyclonic boundary current of Atlantic Water of O(1 − 2 Sv; where 1 Sv ≡ 106 m3 s−1) and a halocline depth of O(200 m), in reasonable agreement with observations. The theory compares well with a series of numerical model calculations in which mixing and environmental parameters are varied, thus lending credibility to the dynamics of the analytic model. In these models, lateral eddy fluxes from the boundary and vertical diffusion in the interior are important drivers of the halocline and the circulation of Atlantic Water in the Arctic Ocean.


2015 ◽  
Vol 28 (23) ◽  
pp. 9143-9165 ◽  
Author(s):  
Yuanlong Li ◽  
Weiqing Han

Abstract In this study decadal (≥10 yr) sea level variations in the Indian Ocean (IO) during 1950–2012 are investigated using the Hybrid Coordinate Ocean Model (HYCOM). The solution of the main run agrees well with observations in the western-to-central IO. Results of HYCOM experiments reveal large spatial variations in the mechanisms of decadal sea level variability. Within the tropical IO (north of 20°S), decadal sea level variations achieve maximum amplitude in the south IO thermocline ridge region. They are predominantly forced by decadal fluctuations of surface wind stress associated with climate variability modes, while the impact of other processes is much smaller. The Somali coast and the western Bay of Bengal are two exceptional regions, where ocean internal (unforced) variability has large contribution. Between 28° and 20°S in the subtropical south IO, surface heat flux and ocean internal variability are the major drivers of decadal sea level variability. Heat budget analysis for the upper 300 m of this region suggests that surface heat flux affects regional thermosteric sea level through both local surface heating and heat transport by ocean circulation. In the southwestern IO south of 30°S, where stochastic winds are strong, stochastic wind forcing and its interaction with ocean internal variability generate pronounced decadal variations in sea level. The comprehensive investigation of decadal sea level variability over the IO from an oceanic perspective will contribute to decadal sea level prediction research, which has a high societal demand.


1997 ◽  
Vol 25 ◽  
pp. 327-332
Author(s):  
Marika M. Holland ◽  
Julie L. Schramm ◽  
Judith A. Curry

Due to large uncertainties in many of the parameters used to model sea ice, it is possible that models with significantly different physical processes can be tuned to obtain realistic present-day simulations. However, in studies of climate change, it is the response of the model it various perturbations that is important, in studies response can be significantly different in sea-ice models that include or exclude various physical feedback mechanisms. Because simplifications in sea-ice physics are necessary for general circulation model experiments, it is important to assess which physical processes are essential for the accurate determination of the sensitivity of the ice pack to climate perturbations. We have attempted to address these issues using a new coupled ice-thickness distribution ocean mixed-layer model. The sensitivity of the model to surface heat-flux perturbations is examined and the importance of the ice ocean and ice-albedo feedback mechanisms in determining this sensitivity is analyzed. We find that the ice ocean and ice-albedo feedback processes are not mutually exclusive, and that they both significantly alter the model response to surface heat flux perturbations.


Sign in / Sign up

Export Citation Format

Share Document