scholarly journals A Novel Phase Unwrapping Method Used for Monitoring the Land Subsidence in Coal Mining Area Based on U-Net Convolutional Neural Network

2021 ◽  
Vol 9 ◽  
Author(s):  
Zhiyong Wang ◽  
Lu Li ◽  
Yaran Yu ◽  
Jian Wang ◽  
Zhenjin Li ◽  
...  

Large-scale and high-intensity mining underground coal has resulted in serious land subsidence. It has caused a lot of ecological environment problems and has a serious impact on the sustainable development of economy. Land subsidence cannot be accurately monitored by InSAR (interferometric synthetic aperture radar) due to the low coherence in the mining area, excessive deformation gradient, and the atmospheric effect. In order to solve this problem, a novel phase unwrapping method based on U-Net convolutional neural network was constructed. Firstly, the U-Net convolutional neural network is used to extract edge to automatically obtain the boundary information of the interferometric fringes in the region of subsidence basin. Secondly, an edge-linking algorithm is constructed based on edge growth and predictive search. The interrupted interferometric fringes are connected automatically. The whole and continuous edges of interferometric fringes are obtained. Finally, the correct phase unwrapping results are obtained according to the principle of phase unwrapping and the wrap-count (integer jump of 2π) at each pixel by edge detection. The Huaibei Coalfield in China was taken as the study area. The real interferograms from D-InSAR (differential interferometric synthetic aperture radar) processing used Sentinel-1A data which were used to verify the performance of the new method. Subsidence basins with clear interferometric fringes, interrupted interferometric fringes, and confused interferometric fringes are selected for experiments. The results were compared with the other methods, such as MCF (minimum cost flow) method. The tests showed that the new method based on U-Net convolutional neural network can resolve the problem that is difficult to obtain the correct unwrapping phase due to interrupted or partially confused interferometric fringes caused by low coherence or other reasons in the coal mining area. Hence, the new method can help to accurately monitor the subsidence in mining areas under different conditions using InSAR technology.

2021 ◽  
Vol 13 (18) ◽  
pp. 3782
Author(s):  
Jiancun Shi ◽  
Zefa Yang ◽  
Lixin Wu ◽  
Siyu Qiao

The previous multi-track InSAR (MTI) method can be used to retrieve mining-induced three-dimensional (3D) surface displacements with high spatial–temporal resolution by incorporating multi-track interferometric synthetic aperture radar (InSAR) observations with a prior model. However, due to the track-by-track strategy used in the previous MTI method, no redundant observations are provided to estimate 3D displacements, causing poor robustness and further degrading the accuracy of the 3D displacement estimation. This study presents an improved MTI method to significantly improve the robustness of the 3D mining displacements derived by the previous MTI method. In this new method, a fused-track strategy, instead of the previous track-by-track one, is proposed to process the multi-track InSAR measurements by introducing a logistic model. In doing so, redundant observations are generated and further incorporated into the prior model to solve 3D displacements. The improved MTI method was tested on the Datong coal mining area, China, with Sentinel-1 InSAR datasets from three tracks. The results show that the 3D mining displacements estimated by the improved MTI method had the same spatial–temporal resolution as those estimated by the previous MTI method and about 33.5% better accuracy. The more accurate 3D displacements retrieved from the improved MTI method can offer better data for scientifically understanding the mechanism of mining deformation and assessing mining-related geohazards.


2019 ◽  
Vol 11 (4) ◽  
pp. 424 ◽  
Author(s):  
Changzhe Jiao ◽  
Xinlin Wang ◽  
Shuiping Gou ◽  
Wenshuai Chen ◽  
Debo Li ◽  
...  

Fully polarimetric synthetic aperture radar (PolSAR) can transmit and receive electromagnetic energy on four polarization channels (HH, HV, VH, VV). The data acquired from four channels have both similarities and complementarities. Utilizing the information between the four channels can considerably improve the performance of PolSAR image classification. Convolutional neural network can be used to extract the channel-spatial features of PolSAR images. Self-paced learning has been demonstrated to be instrumental in enhancing the learning robustness of convolutional neural network. In this paper, a novel classification method for PolSAR images using self-paced convolutional neural network (SPCNN) is proposed. In our method, each pixel is denoted by a 3-dimensional tensor block formed by its scattering intensity values on four channels, Pauli’s RGB values and its neighborhood information. Then, we train SPCNN to extract the channel-spatial features and obtain the classification results. Inspired by self-paced learning, SPCNN learns the easier samples first and gradually involves more difficult samples into the training process. This learning mechanism can make network converge to better values. The proposed method achieved state-of-the-art performances on four real PolSAR dataset.


2020 ◽  
Vol 12 (6) ◽  
pp. 944 ◽  
Author(s):  
Jin Zhang ◽  
Hao Feng ◽  
Qingli Luo ◽  
Yu Li ◽  
Jujie Wei ◽  
...  

Oil spill detection plays an important role in marine environment protection. Quad-polarimetric Synthetic Aperture Radar (SAR) has been proved to have great potential for this task, and different SAR polarimetric features have the advantages to recognize oil spill areas from other look-alikes. In this paper we proposed an oil spill detection method based on convolutional neural network (CNN) and Simple Linear Iterative Clustering (SLIC) superpixel. Experiments were conducted on three Single Look Complex (SLC) quad-polarimetric SAR images obtained by Radarsat-2 and Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). Several groups of polarized parameters, including H/A/Alpha decomposition, Single-Bounce Eigenvalue Relative Difference (SERD), correlation coefficients, conformity coefficients, Freeman 3-component decomposition, Yamaguchi 4-component decomposition were extracted as feature sets. Among all considered polarimetric features, Yamaguchi parameters achieved the highest performance with total Mean Intersection over Union (MIoU) of 90.5%. It is proved that the SLIC superpixel method significantly improved the oil spill classification accuracy on all the polarimetric feature sets. The classification accuracy of all kinds of targets types were improved, and the largest increase on mean MIoU of all features sets was on emulsions by 21.9%.


Sign in / Sign up

Export Citation Format

Share Document