scholarly journals A Novel Method for Extracting Time Series Information of Deformation Area of a Single Landslide Based on Improved U-Net Neural Network

2021 ◽  
Vol 9 ◽  
Author(s):  
Bibo Dai ◽  
Yunmin Wang ◽  
Chunyang Ye ◽  
Qihang Li ◽  
Canming Yuan ◽  
...  

This paper proposed an improved U-Net fully convolutional neural network to automatically extract a single landslide deformation information under time series based on the physical model experiments. This method extracts time series information for three different landslide deformation ranges. Compared to U-Net and mainstream superpixel method, evaluation indicators of DSC, VOE and RVD verify the high recognition accuracy and strong robustness of our method.

2020 ◽  
Author(s):  
Hao Gu ◽  
Guangwei Qing ◽  
Yu Wang ◽  
Sheng Hong ◽  
Guan Gui ◽  
...  

<div>Drones-aided ubiquitous applications play more and more important roles in our daily life. Accurate recognition of drones is required in aviation management due to their potential risks and even disasters.</div><div>Radio frequency (RF) fingerprinting-based recognition technology based on deep learning is considered as one of the effective approaches to extract hidden abstract features from RF data of drones. Existing deep learning-based methods are either a high computational burden or low accuracy.</div><div>In this paper, we propose a deep complex-valued convolutional neural network (DC-CNN) method based on RF fingerprinting for recognizing different drones.</div><div>Compared with existing recognition methods, the DC-CNN method has the advantages of high recognition accuracy, fast running time and small network complexity.</div><div>Nine algorithm models and two datasets are used to represent the superior performance of our system.</div><div>Experimental results show that our proposed DC-CNN can achieve recognition accuracy of 99.5\% and 74.1\% respectively on 4 and 8 classes of RF drone datasets.</div>


2020 ◽  
Author(s):  
Hao Gu ◽  
Guangwei Qing ◽  
Yu Wang ◽  
Sheng Hong ◽  
Guan Gui ◽  
...  

<div>Drones-aided ubiquitous applications play more and more important roles in our daily life. Accurate recognition of drones is required in aviation management due to their potential risks and even disasters.</div><div>Radio frequency (RF) fingerprinting-based recognition technology based on deep learning is considered as one of the effective approaches to extract hidden abstract features from RF data of drones. Existing deep learning-based methods are either a high computational burden or low accuracy.</div><div>In this paper, we propose a deep complex-valued convolutional neural network (DC-CNN) method based on RF fingerprinting for recognizing different drones.</div><div>Compared with existing recognition methods, the DC-CNN method has the advantages of high recognition accuracy, fast running time and small network complexity.</div><div>Nine algorithm models and two datasets are used to represent the superior performance of our system.</div><div>Experimental results show that our proposed DC-CNN can achieve recognition accuracy of 99.5\% and 74.1\% respectively on 4 and 8 classes of RF drone datasets.</div>


2021 ◽  
Vol 11 (14) ◽  
pp. 6594
Author(s):  
Yu-Chia Hsu

The interdisciplinary nature of sports and the presence of various systemic and non-systemic factors introduce challenges in predicting sports match outcomes using a single disciplinary approach. In contrast to previous studies that use sports performance metrics and statistical models, this study is the first to apply a deep learning approach in financial time series modeling to predict sports match outcomes. The proposed approach has two main components: a convolutional neural network (CNN) classifier for implicit pattern recognition and a logistic regression model for match outcome judgment. First, the raw data used in the prediction are derived from the betting market odds and actual scores of each game, which are transformed into sports candlesticks. Second, CNN is used to classify the candlesticks time series on a graphical basis. To this end, the original 1D time series are encoded into 2D matrix images using Gramian angular field and are then fed into the CNN classifier. In this way, the winning probability of each matchup team can be derived based on historically implied behavioral patterns. Third, to further consider the differences between strong and weak teams, the CNN classifier adjusts the probability of winning the match by using the logistic regression model and then makes a final judgment regarding the match outcome. We empirically test this approach using 18,944 National Football League game data spanning 32 years and find that using the individual historical data of each team in the CNN classifier for pattern recognition is better than using the data of all teams. The CNN in conjunction with the logistic regression judgment model outperforms the CNN in conjunction with SVM, Naïve Bayes, Adaboost, J48, and random forest, and its accuracy surpasses that of betting market prediction.


2021 ◽  
Vol 11 (11) ◽  
pp. 5235
Author(s):  
Nikita Andriyanov

The article is devoted to the study of convolutional neural network inference in the task of image processing under the influence of visual attacks. Attacks of four different types were considered: simple, involving the addition of white Gaussian noise, impulse action on one pixel of an image, and attacks that change brightness values within a rectangular area. MNIST and Kaggle dogs vs. cats datasets were chosen. Recognition characteristics were obtained for the accuracy, depending on the number of images subjected to attacks and the types of attacks used in the training. The study was based on well-known convolutional neural network architectures used in pattern recognition tasks, such as VGG-16 and Inception_v3. The dependencies of the recognition accuracy on the parameters of visual attacks were obtained. Original methods were proposed to prevent visual attacks. Such methods are based on the selection of “incomprehensible” classes for the recognizer, and their subsequent correction based on neural network inference with reduced image sizes. As a result of applying these methods, gains in the accuracy metric by a factor of 1.3 were obtained after iteration by discarding incomprehensible images, and reducing the amount of uncertainty by 4–5% after iteration by applying the integration of the results of image analyses in reduced dimensions.


2021 ◽  
Author(s):  
Wenjie Cao ◽  
Cheng Zhang ◽  
Zhenzhen Xiong ◽  
Ting Wang ◽  
Junchao Chen ◽  
...  

2018 ◽  
Vol 7 (11) ◽  
pp. 418 ◽  
Author(s):  
Tian Jiang ◽  
Xiangnan Liu ◽  
Ling Wu

Accurate and timely information about rice planting areas is essential for crop yield estimation, global climate change and agricultural resource management. In this study, we present a novel pixel-level classification approach that uses convolutional neural network (CNN) model to extract the features of enhanced vegetation index (EVI) time series curve for classification. The goal is to explore the practicability of deep learning techniques for rice recognition in complex landscape regions, where rice is easily confused with the surroundings, by using mid-resolution remote sensing images. A transfer learning strategy is utilized to fine tune a pre-trained CNN model and obtain the temporal features of the EVI curve. Support vector machine (SVM), a traditional machine learning approach, is also implemented in the experiment. Finally, we evaluate the accuracy of the two models. Results show that our model performs better than SVM, with the overall accuracies being 93.60% and 91.05%, respectively. Therefore, this technique is appropriate for estimating rice planting areas in southern China on the basis of a pre-trained CNN model by using time series data. And more opportunity and potential can be found for crop classification by remote sensing and deep learning technique in the future study.


Author(s):  
Bohao Li ◽  
Liping Zhao ◽  
Yiyong Yao

Failure time prognosis in manufacturing process plays a crucial role in guaranteeing manufacturing safety and reducing maintenance loss. However, most current prognosis methods face great difficulty when handling massive data collected from manufacturing process. Convolutional neural network (CNN) provides an effective way to extract features with massive data. Due to the difference between images and multisensory signals, CNN is not suitable for machining process. Inspired by the idea of CNN, a novel prognosis framework is proposed based on the characteristics of multisensory signals, which is called multi-dislocated time series convolutional neural network (MDTSCNN). The proposed MDTSCNN is composed of multi-dislocate layer, convolutional layer, pooling layer and fully connected layer. By adding a multi-dislocate layer, this model can learn the relationship between different signals and different intervals in periodic multisensory signals. The effectiveness of proposed method is validated by a milling process. Compared to other prognosis method, the proposed MDTSCNN shows enhanced performances in prediction accuracy.


Sign in / Sign up

Export Citation Format

Share Document