scholarly journals The Characteristics of Closed Pores in Coals With Different Ranks

2021 ◽  
Vol 9 ◽  
Author(s):  
Tong Liu ◽  
Yixin Zhao ◽  
Nima Noraei Danesh

The closed pores in coal seams influence the storage of coalbed methane. The investigation of closed pores characteristics for coals is of great significance in improving the production of coalbed methane and revealing the mechanism of coal and gas outburst. However, due to limitations in analytical techniques, the characteristics and evolution mechanism of closed pores in coals with different ranks are not sufficiently understood. In this paper, eight coal samples with different ranks were collected and characterized by small-angle X-ray scattering (SAXS) and low-temperature nitrogen adsorption (LTNA). The open and closed pores of coals with various ranks were studied, and the mechanism for evolution of closed pores during coalification was proposed. The results show that among eight coal samples with different ranks, the closed porosity of low-metamorphic coals is relatively lower, the closed porosity of medium-metamorphic coals is in the middle, and the closed porosity of high-metamorphic coals is relatively higher. The change in closed porosity for coals with different ranks may be related to varieties of the molecular structure of coals. The low-metamorphic coals have more disordered arrangement of molecular structure and easily form connected pores. Therefore, the closed porosity in low-metamorphic coals is low. The aromatization of medium-metamorphic coals turns aliphatic chains into closed aromatic rings, and the closed porosity of these coals also increases. When coals reach a high degree of metamorphism, polycondensation compacts the coal macromolecular structure, providing for easy formation of closed pores between aromatic condensed rings, so the closed porosity is obviously increased in high-metamorphic coals. This study has dual significance in advancing the understanding of open and closed pores in coals and the mechanism of coal and gas outburst.

2012 ◽  
Vol 619 ◽  
pp. 598-602 ◽  
Author(s):  
Ling Ling Qi ◽  
Zhao Feng Wang ◽  
Hong Min Yang

In order to investigate the pore characteristics of the different destroyed-types of coals and its effects of coal and gas outburst, this article studyed the low temperature nitrogen adsorption curve, specific surface area, pore volume and its distribution with the method of low-temperature nitrogen adsorption, also studed their changes with the different destroyed-type of coals, and the influences of pore shape and distribution for coal and gas outburst. The results showed that three different destroyed-types of coals have loops, the pore shapes of the coals mainly open-shaped, maybe also contain the flask-shaped. The raw coal has more open-shaped pores, fragmentated coal contains a large number of micropore, the crushed coal richs micropore and mesopore. The crushed coal in the large aperture of the medium relative pressure range mainly has open-shaped pore, then in maller pore size range of low relative pressure mainly has closed pore. With the increasing of destroyed-degree, the porosity increased, the anti-destruction capability reduced, the coal is more easily broken, then the risk of outburst is greater.


2019 ◽  
Author(s):  
Paul Pearce ◽  
Gaurav Assat ◽  
Antonella Iadecola ◽  
François Fauth ◽  
Rémi Dedryvère ◽  
...  

The recent discovery of anionic redox as a means to increase the energy density of transition metal oxide positive electrodes is now a well established approach in the Li-ion battery field. However, the science behind this new phenomenon pertaining to various Li-rich materials is still debated. Thus, it is of paramount importance to develop a robust set of analytical techniques to address this issue. Herein, we use a suite of synchrotron-based X-ray spectroscopies as well as diffraction techniques to thoroughly characterize the different redox processes taking place in a model Li-rich compound, the tridimentional hyperhoneycomb β-Li2IrO3. We clearly establish that the reversible removal of Li+ from this compound is associated to a previously described reductive coupling mechanism and the formation of the M-(O-O) and M-(O-O)* states. We further show that the respective contributions to these states determine the spectroscopic response for both Ir L3-edge X-ray absorption spectroscopy (XAS) and X-ray photoemissions spectroscopy (XPS). Although the high covalency and the robust tridimentional structure of this compound enable a high degree of reversibile delithiation, we found that pushing the limits of this charge compensation mechanism has significant effects on the local as well as average structure, leading to electrochemical instability over cycling and voltage decay. Overall, this work highlights the practical limits to which anionic redox can be exploited and sheds some light on the nature of the oxidized species formed in certain lithium-rich compounds.<br>


2019 ◽  
Author(s):  
Paul Pearce ◽  
Gaurav Assat ◽  
Antonella Iadecola ◽  
François Fauth ◽  
Rémi Dedryvère ◽  
...  

The recent discovery of anionic redox as a means to increase the energy density of transition metal oxide positive electrodes is now a well established approach in the Li-ion battery field. However, the science behind this new phenomenon pertaining to various Li-rich materials is still debated. Thus, it is of paramount importance to develop a robust set of analytical techniques to address this issue. Herein, we use a suite of synchrotron-based X-ray spectroscopies as well as diffraction techniques to thoroughly characterize the different redox processes taking place in a model Li-rich compound, the tridimentional hyperhoneycomb β-Li2IrO3. We clearly establish that the reversible removal of Li+ from this compound is associated to a previously described reductive coupling mechanism and the formation of the M-(O-O) and M-(O-O)* states. We further show that the respective contributions to these states determine the spectroscopic response for both Ir L3-edge X-ray absorption spectroscopy (XAS) and X-ray photoemissions spectroscopy (XPS). Although the high covalency and the robust tridimentional structure of this compound enable a high degree of reversibile delithiation, we found that pushing the limits of this charge compensation mechanism has significant effects on the local as well as average structure, leading to electrochemical instability over cycling and voltage decay. Overall, this work highlights the practical limits to which anionic redox can be exploited and sheds some light on the nature of the oxidized species formed in certain lithium-rich compounds.<br>


2011 ◽  
Vol 121-126 ◽  
pp. 2607-2613
Author(s):  
Qian Ting Hu ◽  
Wen Bin Wu ◽  
Guo Qiang Cheng

Outburst cavity formed during coal and gas outburst can be pear shaped, elliptical, or just like an irregularly elongated ellipsoid, its capacity is always smaller than the volume of ejected coal. And the gas emission quantity is almost 4 to 10 times as gas content in ejected coal. These are two different expressions of the same problem. To find the reasons for the decrease of outburst cavity volume and the increase of gas emission quantity per ton, by using the finite element code ANSYS, the damage zone and the failure zone of the outburst cavity were determined based on the static and dynamic combination method. In this paper, the reason for the decrease of the outburst volume was explained.


Author(s):  
Ting Liu ◽  
Baiquan Lin ◽  
Xuehai Fu ◽  
Ang Liu

AbstractAlthough a series of hypotheses have been proposed, the mechanism underlying coal and gas outburst remains unclear. Given the low-index outbursts encountered in mining practice, we attempt to explore this mechanism using a multiphysics coupling model considering the effects of coal strength and gas mass transfer on failure. Based on force analysis of coal ahead of the heading face, a risk identification index Cm and a critical criterion (Cm ≥ 1) of coal instability are proposed. According to this criterion, the driving force of an outburst consists of stress and gas pressure gradients along the heading direction of the roadway, whereas resistance depends on the shear and tensile strengths of the coal. The results show that outburst risk decreases slightly, followed by a rapid increase, with increasing vertical stress, whereas it decreases with increasing coal strength and increases with gas pressure monotonically. Using the response surface method, a coupled multi-factor model for the risk identification index is developed. The results indicate strong interactions among the controlling factors. Moreover, the critical values of the factors corresponding to outburst change depending on the environment of the coal seams, rather than being constants. As the buried depth of a coal seam increases, the critical values of gas pressure and coal strength decrease slightly, followed by a rapid increase. According to its controlling factors, outburst can be divided into stress-dominated, coal-strength-dominated, gas-pressure-dominated, and multi-factor compound types. Based on this classification, a classified control method is proposed to enable more targeted outburst prevention.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Viktoriia Savchenko ◽  
Iulia Emilia Brumboiu ◽  
Victor Kimberg ◽  
Michael Odelius ◽  
Pavel Krasnov ◽  
...  

AbstractQuenching of vibrational excitations in resonant inelastic X-ray scattering (RIXS) spectra of liquid acetic acid is observed. At the oxygen core resonance associated with localized excitations at the O–H bond, the spectra lack the typical progression of vibrational excitations observed in RIXS spectra of comparable systems. We interpret this phenomenon as due to strong rehybridization of the unoccupied molecular orbitals as a result of hydrogen bonding, which however cannot be observed in x-ray absorption but only by means of RIXS. This allows us to address the molecular structure of the liquid, and to determine a lower limit for the average molecular chain length.


Sign in / Sign up

Export Citation Format

Share Document