scholarly journals Footprints of Immune Cells in the Pancreas in Type 1 Diabetes; to “B” or Not to “B”: Is That Still the Question?

2021 ◽  
Vol 12 ◽  
Author(s):  
Pia Leete ◽  
Noel G. Morgan

Significant progress has been made in understanding the phenotypes of circulating immune cell sub-populations in human type 1 diabetes but much less is known about the equivalent populations that infiltrate the islets to cause beta-cell loss. In particular, considerable uncertainties remain about the phenotype and role of B-lymphocytes in the pancreas. This gap in understanding reflects both the difficulty in accessing the gland to study islet inflammation during disease progression and the fact that the number and proportion of islet-associated B-lymphocytes varies significantly according to the disease endotype. In very young children (especially those <7 years at onset) pancreatic islets are infiltrated by both CD8+ T- and CD20+ B-lymphocytes in roughly equal proportions but it is widely held that the CD8+ T-lymphocytes are responsible for driving beta-cell toxicity. By contrast, the role played by B-lymphocytes remains enigmatic. This is compounded by the fact that, in older children and teenagers (those ≥13 years at diagnosis) the proportion of B-lymphocytes found in association with inflamed islets is much reduced by comparison with those who are younger at diagnosis (reflecting two endotypes of disease) whereas CD8+ T-lymphocytes form the predominant population in both groups. In the present paper, we review the current state of understanding and develop a proposal to stimulate further discussion of the roles played by islet-associated B-lymphocytes in human type 1 diabetes. We cite evidence indicating that sites of direct contact can be found between CD8+ and CD20+-lymphocytes in and around inflamed islets and propose that such interactions may be important in determining the efficiency of beta cell killing.

2013 ◽  
Vol 15 (s3) ◽  
pp. 89-97 ◽  
Author(s):  
S. Luce ◽  
C. Briet ◽  
C. Bécourt ◽  
F. Lemonnier ◽  
C. Boitard

2021 ◽  
Vol 11 ◽  
Author(s):  
Christine Bender ◽  
Sakthi Rajendran ◽  
Matthias G. von Herrath

Since the establishment of the network for pancreatic organ donors with diabetes (nPOD), we have gained unprecedented insight into the pathology of human type 1 diabetes. Many of the pre-existing “dogmas”, mostly derived from studies of animal models and sometimes limited human samples, have to be revised now. For example, we have learned that autoreactive CD8 T cells are present even in healthy individuals within the exocrine pancreas. Furthermore, their “attraction” to islets probably relies on beta-cell intrinsic events, such as the over-expression of MHC class I and resulting presentation of autoantigens such as (prepro)insulin. In addition, we are discovering other signs of beta-cell dysfunction, possibly at least in part due to stress, such as the over-expression of certain cytokines. This review summarizes the latest developments focusing on cytokines and autoreactive CD8 T cells in human type 1 diabetes pathogenesis.


Biomedicines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 42
Author(s):  
Jamie L. Felton ◽  
Holly Conway ◽  
Rachel H. Bonami

Islet autoantibodies are the primary biomarkers used to predict type 1 diabetes (T1D) disease risk. They signal immune tolerance breach by islet autoantigen-specific B lymphocytes. T-B lymphocyte interactions that lead to expansion of pathogenic T cells underlie T1D development. Promising strategies to broadly prevent this T-B crosstalk include T cell elimination (anti-CD3, teplizumab), B cell elimination (anti-CD20, rituximab), and disruption of T cell costimulation/activation (CTLA-4/Fc fusion, abatacept). However, global disruption or depletion of immune cell subsets is associated with significant risk, particularly in children. Therefore, antigen-specific therapy is an area of active investigation for T1D prevention. We provide an overview of strategies to eliminate antigen-specific B lymphocytes as a means to limit pathogenic T cell expansion to prevent beta cell attack in T1D. Such approaches could be used to prevent T1D in at-risk individuals. Patients with established T1D would also benefit from such targeted therapies if endogenous beta cell function can be recovered or islet transplant becomes clinically feasible for T1D treatment.


2011 ◽  
Vol 23 (6) ◽  
pp. 746-753 ◽  
Author(s):  
Bart O Roep ◽  
Mark Peakman

Author(s):  
Charanya Muralidharan ◽  
Abass M. Conteh ◽  
Michelle R. Marasco ◽  
Justin J. Crowder ◽  
Jeroen Kuipers ◽  
...  

AbstractAims/hypothesisPancreatic beta cells are highly metabolic secretory cells that are subjected to exogenous damaging factors such as proinflammatory cytokines or excess glucose that can cause accumulation of damage-inducing reactive oxygen species (ROS) during the pathogenesis of diabetes. We and others have shown that beta cell autophagy can reduce ROS to protect against apoptosis both in vitro and in vivo. While impaired islet autophagy has been demonstrated in human type 2 diabetes, it is unknown if islet autophagy is perturbed in the pathogenesis of type 1 diabetes. We hypothesized that beta cell autophagy is dysfunctional in type 1 diabetes, and that there is a progressive loss during early diabetes development.MethodsMouse pancreata were collected from chloroquine injected and non-injected NOR, nondiabetic NOD, and diabetic NOD mice. Age and BMI-matched pancreas tissue sections from human organ donors (n=34) were obtained from the Network for Pancreatic Organ Donors with Diabetes (nPOD). To assess autophagic flux, we injected the mice with chloroquine to inhibit the final stages of autophagy. We analyzed tissues for markers of autophagy via immunofluorescence analysis. Tissue sections were stained with antibodies against proinsulin or insulin (beta cell markers), LC3A/B (autophagosome marker), Lamp1 (lysosome marker), and p62 (autophagy adaptor protein and marker for autophagic flux). Images were collected on a scanning laser confocal microscope then analyzed with CellProfiler and ImageJ. Secondary lysosomes and telolysosomes (formerly called lipofuscin bodies, residual bodies or tertiary lysosomes) were analyzed in electron micrographs of pancreatic tissue sections from human organ donors (nPOD; n=12) deposited in www.nanotomy.org/OA/nPOD. Energy Dispersive X-ray (EDX) analysis was also performed on these tissues to analyze distribution of elements such as nitrogen, phosphorus, and osmium in secondary lysosomes and telolysosomes of nondiabetic and autoantibody positive donor tissues (n=5).ResultsWe observed increased autophagosome numbers in islets of diabetic NOD mice (p=0.0077) and increased p62 in islets of both nondiabetic and diabetic NOD mice (p<0.0001 in both cases) when compared to NOR mice. There was also a significant reduction in autophagosome:lysosome colocalization in islets of diabetic NOD mice compared to both nondiabetic NOD mice (p=0.0004) and NOR mice (p=0.0003). Chloroquine infusions elicited accumulation of autophagosomes in the islets of NOR (p=0.0029) and nondiabetic NOD mice (p<0.0001), but not in the islets of diabetic NOD mice. Chloroquine also stimulated an accumulation of the autophagy adaptor protein p62 in the islets of NOR mice (p<0.001), however this was not observed in NOD mice (regardless of diabetes status). In the human pancreata, we observed significantly reduced autophagosome:lysosome colocalization (p=0.0002) in the residual beta cells of donors with type 1 diabetes compared to nondiabetic controls. We also observed reduced colocalization of proinsulin with lysosomes in the residual beta cells of donors with type 1 diabetes compared to both nondiabetic (p<0.0001) and autoantibody positive donors (p<0.0001). Electron microscopy based analysis of human pancreas sections also revealed accumulation of telolysosomes in beta cells of autoantibody positive donors (p=0.0084), the majority of which had an nitrogen dense ring outside a phospholipid core.Conclusions/interpretationCollectively, we provide evidence of impairment in the final degradation stages of islet macroautophagy and crinophagy in human type 1 diabetes. We also document an accumulation of telolysosomes with nitrogen accumulation at their periphery in the beta cells of autoantibody positive donors. This demonstrates clear differences in the lysosome contents of autoantibody positive donors that may be associated with lysosome dysfunction prior to clinical hyperglycemia. We observe similar impairments in macroautophagy in the diabetic NOD mouse, a model of type 1 diabetes, suggesting that this mouse model can be appropriately used to study the pathogenesis of autophagy/crinophagy loss and how it relates to disease initiation and progression. Considering these data in the context of what is known regarding the cell-protective effects of islet autophagy, we suggest targeting beta cell autophagy pathways as an approach to reduce apoptosis in individuals at risk for type 1 diabetes development.Research in contextWhat is already known about this subject?Autophagy confers a cytoprotective role in the beta cell.Autophagy is reduced in type 2 diabetes.Autophagy in the context of type 1 diabetes is unexplored.What is the key question?Is autophagy reduced during the pathogenesis of human type 1 diabetes?What are the new findings?We provide evidence of reduced autophagy and crinophagy in human type 1 diabetes.These data are supported by observations of reduced autophagy in a mouse model of autoimmune diabetes.How might this impact on clinical practice in the foreseeable future?This study provides evidence that autophagy is impaired in human type 1 diabetes. Prior studies have shown that loss of autophagy in the islet is associated with increased beta cell apoptosis, therefore we propose that therapeutic targeting of autophagy pathways may reduce beta cell death in type 1 diabetes development.


2021 ◽  
Vol 10 (7) ◽  
Author(s):  
Johnna D Wesley ◽  
Susanne Pfeiffer ◽  
Darius Schneider ◽  
David Friedrich ◽  
Nikole Perdue ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document