scholarly journals Corrigendum: The Potential Roles of Very Low Calorie, Very Low Calorie Ketogenic Diets and Very Low Carbohydrate Diets on the Gut Microbiota Composition

2021 ◽  
Vol 12 ◽  
Author(s):  
Mariangela Rondanelli ◽  
Clara Gasparri ◽  
Gabriella Peroni ◽  
Milena Anna Faliva ◽  
Maurizio Naso ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Mariangela Rondanelli ◽  
Clara Gasparri ◽  
Gabriella Peroni ◽  
Milena Anna Faliva ◽  
Maurizio Naso ◽  
...  

Several studies have described a strong correlation between diet, weight loss, and gut microbiota composition. The aim of this review was to evaluate the potential effects of energy-restricted diets, namely very low calorie diets (VLCDs), very low calorie ketogenic diets (VLCKDs), and very low carbohydrate diets (VLCarbDs), on the composition of the gut microbiota in humans. We performed a literature search using the following terms (with their abbreviations or acronyms): “very low calorie diet”, “very low calorie ketogenic diet”, “very low carbohydrate diet”, and “gut microbiota”. Our search strategy retrieved nine eligible studies. Overall, VLCDs and VLCarbDs affected the Bacteroidetes to Firmicutes ratio in obese patients, leading to a reduction in short-chain fatty acid production by fecal microbiota associated with Clostridial cluster XIVa. This reduction particularly affected Roseburia and Eubacterium rectale, the two most abundant butyrate-producing bacteria in human feces. VLCKDs preserved the core fecal microbiome, but altered the composition of fecal microbial populations in relation to the plasma metabolome and fecal bile acid composition. In particular, VLCKD-induced weight loss resulted in a reduction in E. rectale and Roseburia, an increase in Christensenellaceae and Akkermansia while not all studies show a decrease in Faecalibacterium prausnitzii. Although very few studies have analyzed the effects of VLCarbDs and VLCDs on gut microbiota, significant diet-induced changes in fecal microbiota composition have been observed. Further studies are needed.


Nutrients ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1836 ◽  
Author(s):  
Helen Robinson ◽  
Helen Barrett ◽  
Luisa Gomez-Arango ◽  
H. David McIntyre ◽  
Leonie Callaway ◽  
...  

The gut microbiome in pregnancy has been associated with various maternal metabolic and hormonal markers involved in glucose metabolism. Maternal ketones are of particular interest due to the rise in popularity of low-carbohydrate diets. We assessed for differences in the composition of the gut microbiota in pregnant women with and without ketonuria at 16 weeks gestation. Fecal samples were obtained from 11 women with fasting ketonuria and 11 matched controls. The samples were analyzed to assess for differences in gut microbiota composition by 16S rRNA sequencing. Supervised hierarchical clustering analysis showed significantly different beta-diversity between women with and without ketonuria, but no difference in the alpha-diversity. Group comparisons and network analysis showed that ketonuria was associated with an increased abundance of the butyrate-producing genus Roseburia. The bacteria that contributed the most to the differences in the composition of the gut microbiota included Roseburia, Methanobrevibacter, Uncl. RF39, and Dialister in women with ketonuria and Eggerthella, Phascolarctobacterium, Butyricimonas, and Uncl. Coriobacteriaceae in women without ketonuria. This study found that the genus Roseburia is more abundant in the gut microbiota of pregnant women with ketonuria. Roseburia is a butyrate producing bacterium and may increase serum ketone levels.


2019 ◽  
Author(s):  
Robin Mesnage ◽  
Franziska Grundler ◽  
Andreas Schwiertz ◽  
Yvon Le Maho ◽  
Françoise Wilhelmi de Toledo

2021 ◽  
Author(s):  
Yilin Liu ◽  
Chunyan Xie ◽  
Zhenya Zhai ◽  
Ze-yuan Deng ◽  
Hugo R. De Jonge ◽  
...  

This study aimed to investigate the effect of uridine on obesity, fat accumulation in liver, and gut microbiota composition in high-fat diet-fed mice.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rafael Corrêa ◽  
Igor de Oliveira Santos ◽  
Heloísa Antoniella Braz-de-Melo ◽  
Lívia Pimentel de Sant’Ana ◽  
Raquel das Neves Almeida ◽  
...  

AbstractGut microbiota composition can modulate neuroendocrine function, inflammation, and cellular and immunological responses against different pathogens, including viruses. Zika virus (ZIKV) can infect adult immunocompetent individuals and trigger brain damage and antiviral responses. However, it is not known whether ZIKV infection could impact the gut microbiome from adult immunocompetent mice. Here, we investigated modifications induced by ZIKV infection in the gut microbiome of immunocompetent C57BL/6J mice. Adult C57BL/6J mice were infected with ZIKV and the gut microbiota composition was analyzed by next-generation sequencing of the V4 hypervariable region present in the bacterial 16S rDNA gene. Our data showed that ZIKV infection triggered a significant decrease in the bacteria belonging to Actinobacteria and Firmicutes phyla, and increased Deferribacteres and Spirochaetes phyla components compared to uninfected mice. Interestingly, ZIKV infection triggered a significant increase in the abundance of bacteria from the Spirochaetaceae family in the gut microbiota. Lastly, we demonstrated that modulation of microbiota induced by ZIKV infection may lead to intestinal epithelium damage and intense leukocyte recruitment to the intestinal mucosa. Taken together, our data demonstrate that ZIKV infection can impact the gut microbiota composition and colon tissue homeostasis in adult immunocompetent mice.


Sign in / Sign up

Export Citation Format

Share Document