scholarly journals Effect of Temperature on Pyrolysis Oil Using High-Density Polyethylene and Polyethylene Terephthalate Sources From Mobile Pyrolysis Plant

2020 ◽  
Vol 8 ◽  
Author(s):  
Ruktai Prurapark ◽  
Kittwat Owjaraen ◽  
Bordin Saengphrom ◽  
Inpitcha Limthongtip ◽  
Nopparat Tongam

This research aims to study the effect of temperature, collecting time, and condensers on properties of pyrolysis oil. The research was done be analyzing viscosity, density, proportion of pyrolysis products and performance of each condenser towers for the pyrolysis of high-density polyethylene (HDPE) and polyethylene terephthalate (PET) in the mobile pyrolysis plant. Results showed that the main product of HDPE resin was liquid, and the main product of PET resin was solid. Since the pyrolysis of PET results in mostly solid which blocked up the pipe, the analysis of pyrolysis oil would be from the use of HDPE as a raw material. The pyrolysis of HDPE resin in the amount of 100 kg at 400, 425, and 450°C produced the amount of oil 22.5, 27, and 40.5 L, respectively. The study found that 450°C was the temperature that gives the highest amount of pyrolysis oil in the experiment. The viscosity was in the range of 3.287–4.850 cSt. The density was in the range of 0.668–0.740 kg/L. The viscosity and density were increased according to three factors: high pyrolysis temperature, number of condensers and longer sampling time. From the distillation at temperatures below 65, 65–170, 170–250, and above 250°C, all refined products in each temperature range had the carbon number according to their boiling points. The distillation of pyrolysis oil in this experiment provided high amount of kerosene, followed by gasoline and diesel.

2020 ◽  
Author(s):  
Ruktai Prurapark ◽  
Kittwat Owjaraen ◽  
Bordin Saengphrom ◽  
Inpitcha Limthongtip ◽  
Nopparat Tongam

Abstract This research aims to study the effect of temperature on pyrolysis oil along with analyzing viscosity, density, proportion of pyrolysis products and performance of each condenser towers of pyrolysis high density polyethylene and polyethylene terephthalate. The results showed that the main product of high density polyethylene resin is liquid and the main product of polyethylene terephthalate resin is solid. The pyrolysis of high density polyethylene resin at 400, 425 and 450ºC produce the amount of oil 22.5, 27 and 40.5 L, respectively. The study found that the temperature at 450ºC was the temperature that give the best pyrolysis oil in the experiment. The viscosity was in the range of 3.287–4.850 cSt. The density was in the range of 0.668-0.740 kg/L. The viscosity and density were increased according to 3 factors: high pyrolysis temperature, number of condensers and longer sampling time. From the distillation at temperatures below 65, 65–170, 170–250 and above 250ºC, all refined products in each temperature range shows the amount of hydrocarbon compounds according to the boiling point.


2021 ◽  
Vol 9 (1) ◽  
pp. 019
Author(s):  
Muhammad Ridho Reksi ◽  
Dian Rahayu Jati ◽  
Yulisa Fitrianingsih

AbstractPlastic waste needs attention because it can cause serious problems if not managed properly. Of the various types of plastics, the most widely disposed of to the environment are Polypropylene, Polyethylene Terephthalate, and High-Density Polyethylene which are usually in the form of plastic bags and bottles. This research was conducted to make bricks made of plastic as an alternative material for infrastructure that is economical, strong, and durable, which is seen based on the compressive strength value based on its type, namely PP, PET, and HDPE plastic bricks. The compressive strength testing phase is carried out three times in each type. The selling price of plastic bricks is determined by the Markup pricing method. The process of plastic brick making includes collecting plastic waste, washing, drying, chopping, melting, and printing. Based on the research results, the plastic bricks produced from the types of PET, HDPE, and PP are in the form of blocks with a size of 19 cm x 10 cm x 6.5 cm, where the PET type brick requires 5.1 kg of waste, 3.6 kg of HDPE type, and the type of PP as much as 3 kg. The compressive strength test values for PP, PET, and HDPE plastic bricks have met the compressive strength standards based on SNI 15-2094-2000, with the highest average compressive strength test values found in PP plastic bricks of 246 kg/cm², plastic bricks HDPE type 166 kg/cm², and plastic brick type PET 98.7 kg/cm². The selling price of plastic bricks without including the purchase price of plastic as raw material for making plastic bricks (Scenario I) for PP plastic bricks costs Rp1.907,00/brick, PET types Rp3.024,00/brick, and HDPE types Rp3.464,00/brick. While the selling price of plastic bricks by entering the purchase price of plastic as raw material for making plastic bricks (Scenario II) for PP plastic bricks Rp2.867,00/brick, PET type Rp4.624,00/brick, and HDPE type Rp3.944,00/brick.Keywords: Compressive Strength, Markup Pricing, Plastic Brick. AbstrakSampah plastik perlu mendapatkan perhatian karena menimbulkan masalah yang serius jika tidak dikelola dengan baik. Dari berbagai jenis plastik, yang paling banyak dibuang ke lingkungan adalah jenis Polypropylene, Polyethylene Terephthalate, dan High Density Polyethylene yang biasanya dalam bentuk kantong dan botol plastik. Penelitian ini dilakukan guna membuat bata berbahan plastik sebagai bahan alternatif infrastruktur yang bersifat ekonomis, kuat dan tahan lama yang dilihat berdasarkan nilai kuat tekan berdasarkan jenisnya, yaitu bata plastik jenis PP, PET, dan HDPE. Tahap pengujian kuat tekan dilakukan sebanyak tiga kali pengulangan di setiap jenisnya. Harga jual bata plastik ditentukan dengan metode Markup pricing. Proses pembuatan bata plastik yaitu pengumpulan sampah plastik, pencucian, penjemuran, pencacahan, pelelehan, dan pencetakan. Berdasarkan hasil penelitian, bata plastik yang dihasilkan dari jenis PET, HDPE, dan PP berbentuk balok dengan ukuran 19 cm x 10 cm x 6,5 cm, dimana bata jenis PET memerlukan sampah sebanyak 5,1 kg, jenis HDPE sebanyak 3,6 kg, dan  jenis PP sebanyak 3 kg. Nilai uji kuat tekan pada bata plastik jenis PP, PET, dan HDPE telah memenuhi standar kuat tekan berdasarkan SNI 15-2094-2000, dengan nilai uji kuat tekan rata-rata tertinggi terdapat pada bata plastik jenis PP sebesar 246 kg/cm², bata plastik jenis HDPE 166 kg/cm², dan bata plastik jenis PET 98,7 kg/cm². Harga jual bata plastik tanpa memasukkan harga beli plastik sebagai bahan baku pembuatan bata plastik (Skenario I) pada bata plastik jenis PP seharga Rp1.907,00/bata, jenis PET Rp3.024,00/bata, dan jenis HDPE Rp3.464,00/bata. Sedangkan harga jual bata plastik dengan memasukkan harga beli plastik sebagai bahan baku pembuatan bata plastik (Skenario II) pada bata plastik jenis PP Rp2.867,00/bata, jenis PET Rp4.624,00/bata, dan jenis HDPE Rp3.944,00/bata.Kata Kunci: Bata Plastik, Kuat Tekan, Markup Pricing.


2021 ◽  
Vol 9 (1) ◽  
pp. 248-256
Author(s):  
J.A. dos Santos ◽  
R.C. Tucunduva ◽  
J.R.M. D’Almeida

Polymer pipes are being widely used by many industrial segments. Although not affected by corrosion, the mechanical performance of these pipes can be reduced due to exposure to temperature, UV radiation and by contact with various fluids. Depending on the deterioration process, embrittlement or plasticization may occur, and the service life of the pipe can be severely reduced. In this work, the combined action of temperature and water upon the mechanical performance of polyamide 12 and high-density polyethylene pipes is evaluated. Destructive and non-destructive techniques were used and the performance of both materials was compared. Both polymers were platicized by the effect of water. However, for high density polyethylene the effect of temperature was more relevant than for polyamide. This behavior was attributed to the dependence of the free volume with the markedly different glass transition temperature of the polymers and the temperatures of testing.


2019 ◽  
Vol 69 (1) ◽  
pp. 61-71 ◽  
Author(s):  
Luis Quiles‐Carrillo ◽  
Nestor Montanes ◽  
Vicent Fombuena ◽  
Rafael Balart ◽  
Sergio Torres‐Giner

2014 ◽  
Vol 49 (6) ◽  
pp. 508-516 ◽  
Author(s):  
Behrooz Roozbehani ◽  
Bagher Anvaripour ◽  
Zahra Maghareh Esfahan ◽  
Mojtaba Mirdrikvand ◽  
Saeedeh Imani Moqadam

2021 ◽  
Vol 6 (1) ◽  
pp. 23-29
Author(s):  
Taufik Iskandar ◽  
Sinar Perbawani Abrina Anggraini ◽  
Melinda Melinda

Indonesia menduduki posisi ke dua setelah cina penghasil sampah plastik terbesar di dunia. Dimana salah satu limbah plastik tersebut adalah HDPE (High Density Polyethylene). Sedangkan plastik merupakan produk hasil pengolahan minyak bumi yang dapat direcycle ke bentuk semulanya karena bahan baku pembuatan limbah plastik adalah nafta yang merupakan salah satu unsur dari minyak bumi. Salah satu solusi yang diperlukan adalah recycle dengan mengubah limbah plastik menjadi bahan bakar dengan proses pirolisis. Pirolisis merupakan salah satu proses terbaik dari recycle limbah plastik, dengan pertimbangan memahami sifat limbah plastik HDPE. Penelitian ini menggunakan alat pirolisis dengan variable suhu proses yaitu 300⸰C, 325⸰C, dan 350⸰C, waktu proses pirolisis yaitu 2 dan 4 jam. Dari proses pirolisis diperoleh hasil volume bahan bakar diesel yaitu pada suhu 300⸰C sebanyak 95 ml, suhu 325⸰C sebanyak 100 ml, dan suhu 350⸰C sebanyak 145 ml. Dari hasil analisa data optimal  untuk suhu dan waktu optimum proses pirolisis limbah plastik HDPE yaitu pada suhu 325⸰C selama 2 jam, bahan bakar diesel yang didapat memiliki kadar abu 0,044 (b/b), dan kadar air 0,031(%vol). ABSTRACTIndonesia is in second place after China, the largest plastic waste producer in the world. Where one of the plastic wastes is HDPE (High-Density Polyethylene). Meanwhile, plastic is a product of petroleum processing that can be recycled to its original form because the raw material for making plastic waste is naphtha, which is an element of petroleum. One solution that is needed to recycle by converting plastic waste into fuel by the pyrolysis process. Pyrolysis is one of the best processes for recycling plastic waste, with consideration of understanding the nature of HDPE plastic waste. This study used a pyrolysis tool with process temperature variables, namely 300⸰C, 325⸰C, and 350⸰C, the pyrolysis process time was 2 and 4 hours. From the pyrolysis process, the results of the volume of diesel fuel are at a temperature of 300 ⸰C as much as 95 ml, a temperature of 325 C as much as 100 ml, and a temperature of 350 ⸰C as much as 145 ml. From the results of the optimal data analysis for the optimum temperature and time of the HDPE plastic waste pyrolysis process, which is at a temperature of 325⸰C for 2 hours, the obtained diesel fuel has an ash content of 0.044 (w / w), and a moisture content of 0.031 (vol%).


2018 ◽  
Vol 12 (8) ◽  
pp. 1294-1297 ◽  
Author(s):  
D. Yu. Zalepugin ◽  
N. A. Tilkunova ◽  
I. V. Chernyshova ◽  
M. I. Vlasov

Sign in / Sign up

Export Citation Format

Share Document