scholarly journals Full Life Cycle Management of Power System Integrated With Renewable Energy: Concepts, Developments and Perspectives

2021 ◽  
Vol 9 ◽  
Author(s):  
Kang Wang ◽  
Yikai Li ◽  
Xiaojun Wang ◽  
Zengtao Zhao ◽  
Ning Yang ◽  
...  

Under high-penetration of renewable energy, power grid is facing with the development problems such as production delay, wind and solar power abandoning. With the continuous growth of renewable energy installation such as wind power, photovoltaic (PV), as well as the increase of power generation capacity, it is urgent to increase peak-load and frequency regulation capacity on a large scale to alleviate the consumption problems caused by large renewable energy integration, and then requires power generation enterprises of peak-load and frequency regulation to increase relevant equipment assets. As a result, peak-load and frequency regulation enterprises must carry out scientific cost management of equipment assets. This paper introduces the concepts, developments and perspectives of life cycle cost (LCC) management of equipment assets in high-penetrated renewable energy power grid, and probes into cost collection and estimation scheme in the process of equipment asset management.

2021 ◽  
Vol 252 ◽  
pp. 02082
Author(s):  
Li Zhenjie ◽  
Hou Guangsong ◽  
Cheng Zhaolong ◽  
Niu Wenhui ◽  
Hu Guohua

The large-scale grid connection of photovoltaic power generation results in the power system frequency fluctuation and frequency regulation capacity decline, which endangers the dynamic security of power grid frequency. In order to reduce the frequency deviation of power grid and tap the potential of photovoltaic power generation participating in frequency regulation, a control method of photovoltaic power participating in frequency regulation of power grid is proposed in this paper. The maximum allowable power of photovoltaic power is predicted through system identification, and the load shedding rate is determined based on this, and the output power is corrected according to the system frequency deviation to participate in frequency regulation of power grid. The model based on MATLAB Simulation results shows the effectiveness of the proposed method.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5951 ◽  
Author(s):  
Wei Li ◽  
Hui Ren ◽  
Ping Chen ◽  
Yanyang Wang ◽  
Hailong Qi

Solar photovoltaic (PV) power generation has strong intermittency and volatility due to its high dependence on solar radiation and other meteorological factors. Therefore, the negative impact of grid-connected PV on power systems has become one of the constraints in the development of large scale PV systems. Accurate forecasting of solar power generation and flexible planning and operational measures are of great significance to ensure safe, stable, and economical operation of a system with high penetration of solar generation at transmission and distribution levels. In this paper, studies on the following aspects are reviewed: (1) this paper comprehensively expounds the research on forecasting techniques of PV power generation output. (2) In view of the new challenge brought by the integration of high proportion solar generation to the frequency stability of power grid, this paper analyzes the mechanisms of influence between them and introduces the current technical route of PV power generation participating in system frequency regulation. (3) This section reviews the feasible measures that facilitate the inter-regional and wide-area consumption of intermittent solar power generation. At the end of this paper, combined with the actual demand of the development of power grid and PV power generation, the problems that need further attention in the future are prospected.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3463
Author(s):  
Xueliang Yuan ◽  
Leping Chen ◽  
Xuerou Sheng ◽  
Mengyue Liu ◽  
Yue Xu ◽  
...  

Economic cost is decisive for the development of different power generation. Life cycle cost (LCC) is a useful tool in calculating the cost at all life stages of electricity generation. This study improves the levelized cost of electricity (LCOE) model as the LCC calculation methods from three aspects, including considering the quantification of external cost, expanding the compositions of internal cost, and discounting power generation. The improved LCOE model is applied to three representative kinds of power generation, namely, coal-fired, biomass, and wind power in China, in the base year 2015. The external cost is quantified based on the ReCiPe model and an economic value conversion factor system. Results show that the internal cost of coal-fired, biomass, and wind power are 0.049, 0.098, and 0.081 USD/kWh, separately. With the quantification of external cost, the LCCs of the three are 0.275, 0.249, and 0.081 USD/kWh, respectively. Sensitivity analysis is conducted on the discount rate and five cost factors, namely, the capital cost, raw material cost, operational and maintenance cost (O&M cost), other annual costs, and external costs. The results provide a quantitative reference for decision makings of electricity production and consumption.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 226
Author(s):  
Xuyang Zhao ◽  
Cisheng Wu ◽  
Duanyong Liu

Within the context of the large-scale application of industrial robots, methods of analyzing the life-cycle cost (LCC) of industrial robot production have shown considerable developments, but there remains a lack of methods that allow for the examination of robot substitution. Taking inspiration from the symmetry philosophy in manufacturing systems engineering, this article further establishes a comparative LCC analysis model to compare the LCC of the industrial robot production with traditional production at the same time. This model introduces intangible costs (covering idle loss, efficiency loss and defect loss) to supplement the actual costs and comprehensively uses various methods for cost allocation and variable estimation to conduct total cost and the cost efficiency analysis, together with hierarchical decomposition and dynamic comparison. To demonstrate the model, an investigation of a Chinese automobile manufacturer is provided to compare the LCC of welding robot production with that of manual welding production; methods of case analysis and simulation are combined, and a thorough comparison is done with related existing works to show the validity of this framework. In accordance with this study, a simple template is developed to support the decision-making analysis of the application and cost management of industrial robots. In addition, the case analysis and simulations can provide references for enterprises in emerging markets in relation to robot substitution.


Author(s):  
Lisa Lenz ◽  
Kai Christian Weist ◽  
Marvin Hoepfner ◽  
Panagiotis Spyridis ◽  
Mike Gralla

AbstractIn the last few years, particular focus has been devoted to the life cycle performance of fastening systems, which is reflected in increasing numbers of publications, standards and large-scale research efforts. Simultaneously, experience shows that in many cases, where fastening systems are implemented – such as industrial facilities – the design of fasteners is governed by fatigue loading under dynamic characteristics. In order to perform an adequate design and to specify the most efficient and appropriate fastening product, the engineer needs to access and process a broad range of technical and commercial information. Building information modelling (BIM), as a data management method in the construction industry, can supply such information and accommodate a comprehensive design and specification process. Furthermore, the application of BIM-based processes, such as the generation of a BIM-model, allows to use the important information for the construction as well as the life cycle management with different actions and time dependencies of the asset and its components. As a consequence, the BIM model offers the potential to correlate different data relevant for achieving the goals of the respective application, in order to ensure a more effective and correct design of the fastening. This paper demonstrates such a BIM-based design framework for an Industry 4.0 case, and in particular, the installation of a factory robot through post-installed anchors under fatigue-relevant loading in concrete.


Sign in / Sign up

Export Citation Format

Share Document