scholarly journals Prognostics and Health Management in Nuclear Power Plants: An Updated Method-Centric Review With Special Focus on Data-Driven Methods

2021 ◽  
Vol 9 ◽  
Author(s):  
Xingang Zhao ◽  
Junyung Kim ◽  
Kyle Warns ◽  
Xinyan Wang ◽  
Pradeep Ramuhalli ◽  
...  

In a carbon-constrained world, future uses of nuclear power technologies can contribute to climate change mitigation as the installed electricity generating capacity and range of applications could be much greater and more diverse than with the current plants. To preserve the nuclear industry competitiveness in the global energy market, prognostics and health management (PHM) of plant assets is expected to be important for supporting and sustaining improvements in the economics associated with operating nuclear power plants (NPPs) while maintaining their high availability. Of interest are long-term operation of the legacy fleet to 80 years through subsequent license renewals and economic operation of new builds of either light water reactors or advanced reactor designs. Recent advances in data-driven analysis methods—largely represented by those in artificial intelligence and machine learning—have enhanced applications ranging from robust anomaly detection to automated control and autonomous operation of complex systems. The NPP equipment PHM is one area where the application of these algorithmic advances can significantly improve the ability to perform asset management. This paper provides an updated method-centric review of the full PHM suite in NPPs focusing on data-driven methods and advances since the last major survey article was published in 2015. The main approaches and the state of practice are described, including those for the tasks of data acquisition, condition monitoring, diagnostics, prognostics, and planning and decision-making. Research advances in non-nuclear power applications are also included to assess findings that may be applicable to the nuclear industry, along with the opportunities and challenges when adapting these developments to NPPs. Finally, this paper identifies key research needs in regard to data availability and quality, verification and validation, and uncertainty quantification.

Author(s):  
P.V. Varde ◽  
Michael G. Pecht

There is a growing trend in applying a prognostics and health management approach to engineering systems in general and space and aviation systems in particular. This paper reviews the role of prognostics and health management approach in support of integrated risk-based applications to nuclear power plants, like risk-based in-service inspection, technical specification optimization, maintenance optimization, etc. The review involves a survey of the state-of-art technologies in prognostics and health management and an exploration of its role in support of integrated risk-based engineering and how the technology can be adopted to realize enhanced safety and operational performance. An integrated risk-based engineering framework for nuclear power plants has been proposed, where probabilistic risk assessment plays the role of identification, prioritization and optimization of systems, structures, and components, while deterministic assessment is performed using a prognostics and health management approach. Keeping in view the requirements of structural reliability assessment, the paper also proposes essential features of a ‘Mechanics-of-Failure’ approach in support of integrated risk-based engineering. The performance criteria used in prognostics and health management has been adopted to meet requirements of risk-based applications.


2021 ◽  
Vol 8 (3A) ◽  
Author(s):  
ANA ROSA BALIZA MAIA ◽  
Youssef Morghi ◽  
AMIR ZACARIAS MESQUITA

According to NRC, the commercial-grade dedication is a process by which a commercial-grade item (CGI) is designated for use as a basic component. This acceptance process is undertaken to provide reasonable assurance that a CGI to be used as a basic component will perform its intended safety function and, in this respect, is deemed equivalent to an item designed and manufactured under a quality assurance program. This assurance is achieved by identifying the critical characteristics of the item and verifying their acceptability by inspections, tests, or analyses by the purchaser or third-party dedicating entity. In Brazil there are two Nuclear Power Plants in operation, one is American design (Angra 1), other is German design (Angra 2) and one is under construction that is German design (Angra 3). The nuclear safety items are imported and many of them are obsolete and besides the process of purchasing imported items is very complicated. If the nuclear industry in Brazil adopt the Commercial-grade dedication it will improve the internal market and facilitate the process of purchasing items. The Brazilian Quality Assurance Standard (Cnen NN 1.16) shows the 18 Basic requirements of 10 CFR 50 App B, so the Brazilian Industry can be qualified according to this Brazilian standard. The critical characteristics identification and the testing process is an engineering responsibility that Brazilian engineer can perform. This work shows the challenge of commercial-grade dedication in Brazil and discuss the importance of this process to the operation of the nuclear power plants in Brazil, including the long-term operation and others Brazilian nuclear projects..


2012 ◽  
Author(s):  
Jamie B. Coble ◽  
Pradeep Ramuhalli ◽  
Leonard J. Bond ◽  
Wes Hines ◽  
Belle Upadhyaya

Author(s):  
Ronald C. Lippy

The nuclear industry is preparing for the licensing and construction of new nuclear power plants in the United States. Several new designs have been developed and approved, including the “traditional” reactor designs, the passive safe shutdown designs and the small modular reactors (SMRs). The American Society of Mechanical Engineers (ASME) provides specific Codes used to perform preservice inspection/testing and inservice inspection/testing for many of the components used in the new reactor designs. The U.S. Nuclear Regulatory Commission (NRC) reviews information provided by applicants related to inservice testing (IST) programs for Design Certifications and Combined Licenses (COLs) under Part 52, “Licenses, Certifications, and Approvals for Nuclear Power Plants,” in Title 10 of the Code of Federal Regulations (10 CFR Part 52) (Reference 1). The 2012 Edition of the ASME OM Code defines a post-2000 plant as a nuclear power plant that was issued (or will be issued) its construction permit, or combined license for construction and operation, by the applicable regulatory authority on or following January 1, 2000. The New Reactors OM Code (NROMC) Task Group (TG) of the ASME Code for Operation and Maintenance of Nuclear Power Plants (NROMC TG) is assigned the task of ensuring that the preservice testing (PST) and IST provisions in the ASME OM Code to address pumps, valves, and dynamic restraints (snubbers) in post-2000 nuclear power plants are adequate to provide reasonable assurance that the components will operate as needed when called upon. Currently, the NROMC TG is preparing proposed guidance for the treatment of active pumps, valves, and dynamic restraints with high safety significance in non-safety systems in passive post-2000 reactors including SMRs.


Author(s):  
William D. Rezak

One of America’s best kept secrets is the success of its nuclear electric power industry. This paper presents data which support the construction and operating successes enjoyed by energy companies that operate nuclear power plants in the US. The result—the US nuclear industry is alive and well. Perhaps it’s time to start anew the building of nuclear power plants. Let’s take the wraps off the major successes achieved in the nuclear power industry. Over 20% of the electricity generated in the United States comes from nuclear power plants. An adequate, reliable supply of reasonably priced electric energy is not a consequence of an expanding economy and gross national product; it is an absolute necessity before such expansion can occur. It is hard to imagine any aspect of our business or personal lives not, in some way, dependent upon electricity. All over the world (in 34 countries) nuclear power is a low-cost, secure, safe, dependable, and environmentally friendly form of electric power generation. Nuclear plants in these countries are built in six to eight years using technology developed in the US, with good performance and safety records. This treatise addresses the success experienced by the US nuclear industry over the last 40 years, and makes the case that this reliable, cost-competitive source of electric power can help support the economic engine of the country and help prevent experiences like the recent crisis in California. Traditionally, the evaluation of electric power generation facility performance has focused on the ability of plants to produce at design capacity for high percentages of the time. Successful operation of nuclear facilities is determined by examining capacity or load factors. Load factor is the percentage of design generating capacity that a power plant actually produces over the course of a year’s operation. This paper makes the case that these operating performance indicators warrant renewed consideration of the nuclear option. Usage of electricity in the US now approaches total generating capacity. The Nuclear Regulatory Commission has pre-approved construction and operating licenses for several nuclear plant designs. State public service commissions are beginning to understand that dramatic reform is required. The economy is recovering and inflation is minimal. It’s time, once more, to turn to the safe, reliable, environmentally friendly nuclear power alternative.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Mauro Cappelli ◽  
Francesco Cordella ◽  
Francesco Bertoncini ◽  
Marco Raugi

Guided wave (GW) testing is regularly used for finding defect locations through long-range screening using low-frequency waves (from 5 to 250 kHz). By using magnetostrictive sensors, some issues, which usually limit the application to nuclear power plants (NPPs), can be fixed. The authors have already shown the basic theoretical background and simulation results concerning a real steel pipe, used for steam discharge, with a complex structure. On the basis of such theoretical framework, a new campaign has been designed and developed on the same pipe, and the obtained experimental results are now here presented as a useful benchmark for the application of GWs as nondestructive techniques. Experimental measures using a symmetrical probe and a local probe in different configurations (pulse-echo and pitch-catch) indicate that GW testing with magnetostrictive sensors can be reliably applied to long-term monitoring of NPPs components.


2020 ◽  
Vol 6 ◽  
pp. 43
Author(s):  
Andreas Schumm ◽  
Madalina Rabung ◽  
Gregory Marque ◽  
Jary Hamalainen

We present a cross-cutting review of three on-going Horizon 2020 projects (ADVISE, NOMAD, TEAM CABLES) and one already finished FP7 project (HARMONICS), which address the reliability of safety-relevant components and systems in nuclear power plants, with a scope ranging from the pressure vessel and primary loop to safety-critical software systems and electrical cables. The paper discusses scientific challenges faced in the beginning and achievements made throughout the projects, including the industrial impact and lessons learned. Two particular aspects highlighted concern the way the projects sought contact with end users, and the balance between industrial and academic partners. The paper concludes with an outlook on follow-up issues related to the long term operation of nuclear power plants.


Author(s):  
Oliver Martin ◽  
Antonio Ballesteros ◽  
Christiane Bruynooghe ◽  
Michel Bie`th

The energy supply of the future in the EU will be a mix of renewable, fossil and nuclear. There are 145 nuclear power reactors in operation in 15 out of the 27 EU countries, with installed power ∼132 GWe. The age distribution of current nuclear power plants in EU is such that in 2010 most of them will have passed 20-years and approximately 25% of them 30 years of age. The decrease of energy supply from nuclear generated electricity can not always be compensated in a reliable and economical way within a short time span. For this situation utilities may be keen to upgrade the reactor output and /or to ask their regulatory bodies for longer term operation. Under the research financed in the Euratom part of the Research Directorate (RTD) of the European Commission several projects explicitly address the safe long term operation of nuclear power plants (NULIFE, LONGLIFE) and the topics proposed in the 2010 call explicitly address issues concerning component ageing, in particular non metallic components, i.e. instrumentation and cables (I&C) and concrete ageing. This paper presents an overview of the plans for long term operation (LTO) of nuclear power plants in the EU. Special emphasis is given on research activities on component ageing management and long term operation issues related to safety.


Sign in / Sign up

Export Citation Format

Share Document