scholarly journals Optimal Renewable Energy Distribution Between Gasifier and Electrolyzer for Syngas Generation in a Power and Biomass-to-Liquid Fuel Process

2022 ◽  
Vol 9 ◽  
Author(s):  
Koteswara R. Putta ◽  
Umesh Pandey ◽  
Ljubisa Gavrilovic ◽  
Kumar R. Rout ◽  
Erling Rytter ◽  
...  

By adding energy as hydrogen to the biomass-to-liquid (BtL) process, several published studies have shown that carbon efficiency can be increased substantially. Hydrogen can be produced from renewable electrical energy through the electrolysis of water or steam. Adding high-temperature thermal energy to the gasifier will also increase the overall carbon efficiency. Here, an economic criterion is applied to find the optimal distribution of adding electrical energy directly to the gasifier as opposed to the electrolysis unit. Three different technologies for electrolysis are applied: solid oxide steam electrolysis (SOEC), alkaline water electrolysis (AEL), and proton exchange membrane (PEM). It is shown that the addition of part of the renewable energy to the gasifier using electric heaters is always beneficial and that the electrolysis unit operating costs are a significant portion of the costs. With renewable electricity supplied at a cost of 50 USD/MWh and a capital cost of 1,500 USD/kW installed SOEC, the operating costs of electric heaters and SOEC account for more than 70% of the total costs. The energy efficiency of the electrolyzer is found to be more important than the capital cost. The optimal amount of energy added to the gasifier is about 37–39% of the energy in the biomass feed. A BtL process using renewable hydrogen imports at 2.5 USD/kg H2 or SOEC for hydrogen production at reduced electricity prices gives the best values for the economic objective.

2020 ◽  
Vol 16 ◽  
Author(s):  
Chanchan Fan ◽  
Peng Zhang ◽  
Ranran Wang ◽  
Yezhu Xu ◽  
Xingrui Sun ◽  
...  

: A new kind of two-dimensional (2D) materials MXene (early transition metal carbides, nitrides and carbonitrides) is obtained by selective etching the A element from the MAX phases. MXene exhibits both the metallic conductivity and the hydrophilic nature due to its metal layer structure and hydroxyl or oxygen terminated surfaces. This review provides an overview of the MXene used in the electrolytes and electrodes for the fuel cells and water splitting. MXene with functional groups termination could construct ion channels that significantly benefits to the ion conductivity through the electrolyte. The metal supported by MXene interaction offers electronic, compositional, and geometric effects that could enhance the catalytic activity and stability. MXene have already shown promising performance for fuel cells and water electrolysis. Herein, the etching and intercalation methods of MXene in recent years are summarized. The applications of MXene for fuel cells electrolyte, catalyst and water splitting catalyst are revealed to provide more brief idea for MXene used as new energy materials.


Author(s):  
Britta Mayerhöfer ◽  
Konrad Ehelebe ◽  
Florian Dominik Speck ◽  
Markus Bierling ◽  
Johannes Bender ◽  
...  

Bipolar membrane|electrode interface water electrolyzers (BPEMWE) were found to outperform a proton exchange membrane (PEM) water electrolyzer reference in a similar membrane electrode assembly (MEA) design based on individual porous...


2021 ◽  
Author(s):  
Burin Yodwong ◽  
Damien Guilbert ◽  
Wattana Kaewmanee ◽  
Matheepot Phattanasak ◽  
Melika Hinaje ◽  
...  

2018 ◽  
Vol 90 (10) ◽  
pp. 1437-1442 ◽  
Author(s):  
Sönke Gößling ◽  
Sebastian Stypka ◽  
Matthias Bahr ◽  
Bernd Oberschachtsiek ◽  
Angelika Heinzel

2021 ◽  
Vol 119 (12) ◽  
pp. 123903
Author(s):  
Xinrong Zhang ◽  
Wei Zhang ◽  
Weijing Yang ◽  
Wen Liu ◽  
Fanqi Min ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document