scholarly journals Using Model Analysis to Unveil Hidden Patterns in Tropical Forest Structures

2021 ◽  
Vol 9 ◽  
Author(s):  
Nicolas Picard ◽  
Frédéric Mortier ◽  
Pierre Ploton ◽  
Jingjing Liang ◽  
Géraldine Derroire ◽  
...  

When ordinating plots of tropical rain forests using stand-level structural attributes such as biomass, basal area and the number of trees in different size classes, two patterns often emerge: a gradient from poorly to highly stocked plots and high positive correlations between biomass, basal area and the number of large trees. These patterns are inherited from the demographics (growth, mortality and recruitment) and size allometry of trees and tend to obscure other patterns, such as site differences among plots, that would be more informative for inferring ecological processes. Using data from 133 rain forest plots at nine sites for which site differences are known, we aimed to filter out these patterns in forest structural attributes to unveil a hidden pattern. Using a null model framework, we generated the anticipated pattern inherited from individual allometric patterns. We then evaluated deviations between the data (observations) and predictions of the null model. Ordination of the deviations revealed site differences that were not evident in the ordination of observations. These sites differences could be related to different histories of large-scale forest disturbance. By filtering out patterns inherited from individuals, our model analysis provides more information on ecological processes.

1999 ◽  
Vol 29 (10) ◽  
pp. 1547-1556 ◽  
Author(s):  
David J Huggard ◽  
Walt Klenner ◽  
Alan Vyse

We used transect surveys at a large-scale experimental site at Sicamous Creek, B.C., to measure the effects of five treatments on windthrow: 10-ha clearcuts, arrays of 1-ha patch cuts, arrays of 0.1-ha patch cuts, individual-tree selection cuts, and uncut controls. We also examined edge effects and conditions predisposing trees to windthrow. Windthrow of subalpine fir (Abies lasiocarpa (Hook.) Nutt.) in the 2.7 years following harvesting increased from 0.6% of basal area per year in uncut forest to 0.8-1.8% per year in harvested treatments, with highest rates in individual tree selection units and lowest rates in 0.1-ha patch-cut arrays. Engelmann spruce (Picea engelmannii Parry ex Engelm.) showed similar patterns of windthrow but lower rates (0.2-0.7% of basal area per year in harvested treatments). Windthrow was concentrated near north and east edges of 1-ha and 10-ha openings but was dispersed throughout the more uniform treatments. Windthrown trees did not differ from random trees in diameter but had lower height/diameter ratios, probably reflecting the greater windthrow observed in subxeric sites on complex, elevated topography. The rates and distribution of windthrow in different harvest treatments have implications for ecological processes, salvage, long-term windthrow potential, and mitigation possibilities.


2018 ◽  
Vol 15 (11) ◽  
pp. 3377-3390 ◽  
Author(s):  
Victoria Meyer ◽  
Sassan Saatchi ◽  
David B. Clark ◽  
Michael Keller ◽  
Grégoire Vincent ◽  
...  

Abstract. Large tropical trees store significant amounts of carbon in woody components and their distribution plays an important role in forest carbon stocks and dynamics. Here, we explore the properties of a new lidar-derived index, the large tree canopy area (LCA) defined as the area occupied by canopy above a reference height. We hypothesize that this simple measure of forest structure representing the crown area of large canopy trees could consistently explain the landscape variations in forest volume and aboveground biomass (AGB) across a range of climate and edaphic conditions. To test this hypothesis, we assembled a unique dataset of high-resolution airborne light detection and ranging (lidar) and ground inventory data in nine undisturbed old-growth Neotropical forests, of which four had plots large enough (1 ha) to calibrate our model. We found that the LCA for trees greater than 27 m (∼ 25–30 m) in height and at least 100 m2 crown size in a unit area (1 ha), explains more than 75 % of total forest volume variations, irrespective of the forest biogeographic conditions. When weighted by average wood density of the stand, LCA can be used as an unbiased estimator of AGB across sites (R2 = 0.78, RMSE = 46.02 Mg ha−1, bias = −0.63 Mg ha−1). Unlike other lidar-derived metrics with complex nonlinear relations to biomass, the relationship between LCA and AGB is linear and remains unique across forest types. A comparison with tree inventories across the study sites indicates that LCA correlates best with the crown area (or basal area) of trees with diameter greater than 50 cm. The spatial invariance of the LCA–AGB relationship across the Neotropics suggests a remarkable regularity of forest structure across the landscape and a new technique for systematic monitoring of large trees for their contribution to AGB and changes associated with selective logging, tree mortality and other types of tropical forest disturbance and dynamics.


1981 ◽  
Vol 8 (2) ◽  
pp. 139-147
Author(s):  
Philip R. O. Kio

Changes taking place in the natural tropical forests are intricate, and the ecological processes which they entail are only gradually becoming understood. Human interference in these processes frequently leads to unforeseen consequences, silvicultural treatments being apt to be applied long before much is known about the characteristics of the constituent species and the particular successional phases on which treatments have been imposed.Perturbations create gaps of varying sizes. Both regeneration in the gaps and the latter's restoration to a state of equilibrium, depend on their size and the intensity of the disturbance. Deflected successions may occur in sensitive ecosystems whereby progress towards vegetational climax is permanently interrupted. In Africa, the human impact on the natural vegetation has been more severe and for a much longer period than in either the Amazon or in large areas of the Indo-Malaysian rain-forest.Apart from the limitations of existing silvicultural techniques for inducing regeneration and promoting growth, vital management decisions are commonly based on the results of regeneration sampling. But this traditional sampling technique does not make sufficient use of the indications provided by Iiocourt's ‘living space’ theory. However, modified procedures which can easily be undertaken and which assign more appropriate areas of occupation to individual seedlings, saplings, poles, and trees in the stand, provide more realistic estimates of the overall stocking. Though much damage is done to saplings and poles by the felling of large trees, the severity of damage is related more to the number of trees felled than to the basal area or volume removed. However, research into effects of alternative logging regimes (monocyclic versus poly cyclic) is required to resolve, for particular forest types, the issue of appropriate management/silvicultural prescriptions.On the basis of silvicultural research in Nigeria, tentative conclusions have been reached that the growth of a residual stand after exploitation can be accelerated by shelterwood treatments. In particular, climber cutting and opening of the canopy by poisoning are effective treatments in promoting recruitment of saplings and poles from seedlings, and their subsequent growth and survival. Controlled logging can be as effective as a poisoning operation to remove shade-casting, uneconomic emergents, and if substituted for such shelterwood poisoning could reduce the expense of implementing forest treatment.In forest management, account must be taken of differing capacities for growth between different species—especially in response to different silvicultural treatments. Thus in the experiments discussed, heavy poisoning promoted greater increments than selective poisoning, though the difference was not statistically significant.


2003 ◽  
Vol 33 (4) ◽  
pp. 712-725 ◽  
Author(s):  
M Gilbert ◽  
N Fielding ◽  
H F Evans ◽  
J -C Grégoire

The spatial pattern of Dendroctonus micans (Kug.) attacks on individual spruce stands was analysed at the regional scale in Britain using data collected between 1982 and 1984 by the British Forestry Commission. These survey data reflect at least 10 years of D. micans spread, in the absence of natural enemies and of pest management control measures. A large-scale spatial gradient in the attack density at the stand level was identified and modelled. The large-scale spatial trend model explained 31.3% of the variability, and divided the study area in three separate areas: a zone where the insect was well established and where attack density presented low variations, a transition zone where attack density sharply decreased, and a zone not yet colonized. Attack density was related to site and stand factors, and to landscape neighbourhood in a linear spatial regression model. The factors correlated to attack density and the spatial autocorrelation structure of remaining variability were found to vary according to the zones, reflecting the predominance of different ecological processes occurring in colonized and uncolonized areas. The shape and orientation of the large-scale spatial model was shown to be mostly influenced by the spatial distribution of early attacks.


2018 ◽  
Author(s):  
Victoria Meyer ◽  
Sassan Saatchi ◽  
David B. Clark ◽  
Michael Keller ◽  
Grégoire Vincent ◽  
...  

Abstract. Large tropical trees store significant amounts of carbon in woody components and their distribution plays an important role in forest carbon stocks and dynamics. Here, we explore the properties of a new Lidar derived index, large tree canopy area (LCA) defined as the area occupied by canopy above a reference height. We hypothesize that this simple measure of forest structure representing the crown area of large canopy trees could consistently explain the landscape variations of forest volume and aboveground biomass (AGB) across a range of climate and edaphic conditions. To test this hypothesis, we assembled a unique dataset of high-resolution airborne Light Detection and Ranging (Lidar) and ground inventory data in nine undisturbed old growth Neotropical forests. We found that the LCA for trees greater than 27 m (~ 25–30 m) in height and at least 100 m2 crown size in a unit area (1 ha), explains more than 75 % of total forest volume variations, irrespective of the forest biogeographic conditions. When weighted by average wood density of the stand, LCA can be used as an unbiased estimator of AGB across all sites (R2 = 0.78, RMSE = 46.02 Mg ha−1, bias = 0.76 Mg ha−1). Unlike other Lidar derived metrics with complex nonlinear relations to biomass, the relationship between LCA and AGB is linear. A comparison with tree inventories across the study sites indicates that LCA correlates best with the crown area (or basal area) of trees with diameter > 50 cm. The spatial invariance of the LCA–AGB relationship across the Neotropics suggests a remarkable regularity of forest structure across the landscape and a new technique for systematic monitoring of large trees for their contribution to AGB and changes associated with selective logging, tree mortality, and other types of forest disturbance and dynamics.


2018 ◽  
Vol 14 (6) ◽  
pp. 20180190 ◽  
Author(s):  
Ruth E. Dunn ◽  
Craig R. White ◽  
Jonathan A. Green

For free-ranging animals, field metabolic rate (FMR) is the sum of their energy expenditure over a specified period. This quantity is a key component of ecological processes at every biological level. We applied a phylogenetically informed meta-analytical approach to identify the large-scale determinants of FMR in seabirds during the breeding season. Using data from 64 studies of energetics in 47 species, we created a model to estimate FMR for any seabird population. We found that FMR was positively influenced by body mass and colony latitude and that it increased throughout the breeding season from incubation to brood to crèche. FMR was not impacted by colony-relative predation pressure or species average brood size. Based on this model, we present an app through which users can generate estimates of FMR for any population of breeding seabird. We encourage the use of this app to complement behavioural studies and increase understanding of how energetic demands influence the role of seabirds as driving components of marine systems.


NASPA Journal ◽  
1998 ◽  
Vol 35 (4) ◽  
Author(s):  
Jackie Clark ◽  
Joan Hirt

The creation of small communities has been proposed as a way of enhancing the educational experience of students at large institutions. Using data from a survey of students living in large and small residences at a public research university, this study does not support the common assumption that small-scale social environments are more conducive to positive community life than large-scale social environments.


Author(s):  
Paul Oehlmann ◽  
Paul Osswald ◽  
Juan Camilo Blanco ◽  
Martin Friedrich ◽  
Dominik Rietzel ◽  
...  

AbstractWith industries pushing towards digitalized production, adaption to expectations and increasing requirements for modern applications, has brought additive manufacturing (AM) to the forefront of Industry 4.0. In fact, AM is a main accelerator for digital production with its possibilities in structural design, such as topology optimization, production flexibility, customization, product development, to name a few. Fused Filament Fabrication (FFF) is a widespread and practical tool for rapid prototyping that also demonstrates the importance of AM technologies through its accessibility to the general public by creating cost effective desktop solutions. An increasing integration of systems in an intelligent production environment also enables the generation of large-scale data to be used for process monitoring and process control. Deep learning as a form of artificial intelligence (AI) and more specifically, a method of machine learning (ML) is ideal for handling big data. This study uses a trained artificial neural network (ANN) model as a digital shadow to predict the force within the nozzle of an FFF printer using filament speed and nozzle temperatures as input data. After the ANN model was tested using data from a theoretical model it was implemented to predict the behavior using real-time printer data. For this purpose, an FFF printer was equipped with sensors that collect real time printer data during the printing process. The ANN model reflected the kinematics of melting and flow predicted by models currently available for various speeds of printing. The model allows for a deeper understanding of the influencing process parameters which ultimately results in the determination of the optimum combination of process speed and print quality.


2021 ◽  
Author(s):  
Parsoa Khorsand ◽  
Fereydoun Hormozdiari

Abstract Large scale catalogs of common genetic variants (including indels and structural variants) are being created using data from second and third generation whole-genome sequencing technologies. However, the genotyping of these variants in newly sequenced samples is a nontrivial task that requires extensive computational resources. Furthermore, current approaches are mostly limited to only specific types of variants and are generally prone to various errors and ambiguities when genotyping complex events. We are proposing an ultra-efficient approach for genotyping any type of structural variation that is not limited by the shortcomings and complexities of current mapping-based approaches. Our method Nebula utilizes the changes in the count of k-mers to predict the genotype of structural variants. We have shown that not only Nebula is an order of magnitude faster than mapping based approaches for genotyping structural variants, but also has comparable accuracy to state-of-the-art approaches. Furthermore, Nebula is a generic framework not limited to any specific type of event. Nebula is publicly available at https://github.com/Parsoa/Nebula.


Sign in / Sign up

Export Citation Format

Share Document