scholarly journals Explaining the Geographic Pattern of Plant Invasion in 67 Nature Reserves in China

2021 ◽  
Vol 9 ◽  
Author(s):  
Shengbin Chen ◽  
Zhiyang Chen ◽  
Wenjie Huang ◽  
Changliang Shao ◽  
Lingfeng Mao ◽  
...  

Biological invasion is a serious threat to biodiversity and ecosystem function in nature reserves. However, the knowledge of the spatial patterns and underlying mechanisms of plant invasions in nature reserves is still limited. Based on a recent dataset on both invasive and native plants in 67 nature reserves of China, we used correlation, regression, and variation partitioning methods to statistically assess the relative roles of the “human activity,” “biotic acceptance,” and “environmental heterogeneity” hypotheses in explaining the geographic pattern of plant invasion. A total of 235 invasive plant species were compiled from 67 nature reserves. The high explanatory power of the human activity variables supported the human activity hypothesis. The biotic acceptance hypothesis was weakly supported since no significant correlations between climatic variables and invasion levels were found when the effects of the other factors were controlled. The environmental heterogeneity hypothesis was partially supported, since the number of native plants, representing environmental heterogeneity at fine-scale explained remarkable proportion of spatial variance of invasive plants but not that of the proportion of invasive plants. We predict that nature reserves with high plant diversity affected by rapid economic development and increasing temperature will face a serious threat of exotic plant invasion. In conclusion, our results provide crucial clues for understanding geographic variance of plant invasion in China’s nature reserves and spatial risk assessment.

2021 ◽  
Vol 77 ◽  
pp. 30-38
Author(s):  
Adam B. Mitchell ◽  
Andrea R. Litt ◽  
Forrest S. Smith
Keyword(s):  

2021 ◽  
Author(s):  
Jian Li ◽  
Zhanrui Leng ◽  
Yueming Wu ◽  
Yizhou Du ◽  
Zhicong Dai ◽  
...  

Abstract Global changes have altered the distribution pattern of the plant communities, including invasive species. Anthropogenic contamination may reduce native plant resistance to the invasive species. Thus, the focus of the current review is on the contaminant biogeochemical behavior among native plants, invasive species and the soil within the plant-soil ecosystem to improve our understanding of the interactions between invasive plants and environmental stressors. Our studies together with synthesis of the literature showed that a) the impacts of invasive species on environmental stress were heterogeneous, b) the size of the impact was variable, and c) the influence types were multidirectional even within the same impact type. However, invasive plants showed self-protective mechanisms when exposed to heavy metals (HMs) and provided either positive or negative influence on the bioavailability and toxicity of HMs. On the other hand, HMs may favor plant invasion due to the widespread higher tolerance of invasive plants to HMS together with the “escape behavior” of native plants when exposed to toxic HM pollution. However, there has been no consensus on whether elemental compositions of invasive plants are different from the natives in the polluted regions. A quantitative research comparing plant, litter and soil contaminant contents between native plants and the invaders in a global context is an indispensable research focus in the future.


2020 ◽  
Vol 11 (1) ◽  
pp. 33
Author(s):  
Enny Widyati

<p><strong>Abstrak.</strong> Seperti halnya dunia manusia, tumbuhan juga mengembangkan sistem komunikasi untuk mencapai kesejahteraan hidupnya. Bahasa yang digunakan adalah senyawa kimia yang diproduksi oleh eksudat akar. Tumbuhan merupakan inisiator karena mereka yang memiliki tujuan untuk apa komunikasi dibangun. Tumbuhan mengeluarkan eksudat akar untuk memanggil atau untuk mengusir mikroba yang diinginkan. Tumbuhan mengirim surat undangan pada beberapa mikroba dengan mensekresikan eksudat akar. Untuk membangun asosiasi mikoriza tumbuhan mengeluarkan gula, asam amino dan strigolakton. Hal tersebut akan dibalas oleh fungi dengan mengeluarkan senyawa flavonoid yang menunjukkan spesifikasi jenis inang-mikoriza. Hadirnya senyawa flavonoid merupakan undangan bagi rhizobium pada tanaman legum untuk membangun asosiasi. Tumbuhan akan menyeleksi rhizobium yang akan diajak berasosiasi dengan mensekresikan senyawa kanavanin yang bersifat toksik. Kesalahan dalam mengeluarkan eksudat akar merupakan surat undangan yang keliru bagi tumbuhan. Dosis senyawa stigolakton yang terlalu rendah tidak akan dapat membentuk asosiasi mikoriza tetapi yang berkembang adalah patogen. Walaupun tumbuhan menghasilkan senyawa fitoantisipin untuk mencegah serangan patogen dan fitoaleksin ketika patogen sudah menginfeksi. Komunikasi akar dengan akar tumbuhan lain dilakukan dengan menghasilkan senyawa alelopati untuk membatasi pertumbuhan akar di sekelilingnya yang dianggap sebagai pesaing. Tanaman invasif atau gulma umumnya selain menghasilkan alelopati juga memproduksi katekin yang dapat membunuh mikroba menguntungkan pada tumbuhan setempat. Akibatnya tumbuhan lokal akan rentan terhadap serangan penyakit dan berujung pada kematian. Selain alelopati, untuk merespon kehadiran tetangganya tumbuhan juga menghasilkan senyawa glukosinolat yang jumlahnya makin meningkat sejalan dengan tingginya biodiversitas vegetasi. Senyawa ini merupakan senyawa beracun bagi patogen, sehingga tumbuhan yang dibudidayakan dengan pola monokultur menjadi rentan terhadap penyakit. Oleh karena itu agar tanah tetap memiliki kandungan senyawa glukosinolat yang memadai serta tetap memelihara kondisi rhizosfir yang dinamis perlu dilakukan pergiliran tanaman varietas lokal setelah beberapa rotasi tanaman.</p><p><em><strong>Abstract.</strong> Similar to human, plants also develop a communication system to achieve their prosperity. Plants utilize chemical compounds of their root exudates as the “languange”. Plants are the initiator of communications, since they define the purposes of building communication. Root exudates are released either to attract or to demenish the soil microbes target as an “invitation letter” to some microbes. To build a mycorrhizal association, for examples, plants issue sugars, amino acids and strygolactones to the rhizosphere. Fungi will reply the invitation by secreting flavonoid compounds that determine host-mycorrhizal specifications. The presence of flavonoids is another invitation to rhizobia to establish association in legume rhizosphere. Plants will select attracted bacteria to build the most host-specific rhizobium association by secreting canavanine compounds that are toxic to non-target rhizobia. Occasionally, an error happened in issuing invitation. When plant release strygolactone in a very low dosages, it will be failure to build mycorrhizal associations otherwise pathogen colonizations, although plants produce either phytoantisipine to prevent pathogens infection or phytoalexin to counter infected pathogens. Communication among roots of neighboring plants is conducted by producing allellopathy compound to limit root growth of the competitors. Invasive plants or weeds generally also produce catechine compounds over the allellophaty that will eliminate soil beneficial microbes of the indigenous plants. As a result, the native plants will be vulnerable to disease and lead to distinct. Responding to the presence of neighboring roots, plants also produce glucosinolate compounds. Glucocynolate consentration will be increased in line with the richness of vegetation biodiversity. These compounds are toxic to the pathogen, which is why plants cultivated in monoculture become more susceptible to disease. Furthermore, to improve soil glucocynolate and to manage the dynamics in the rhizosphere, need to a shift cultivation after several rotations of a commodity with the local varieties.</em></p>


Author(s):  
Marcelo A. Aizen ◽  
Carolina L. Morales

Abstract There has been growing interest in the consequences of invasive non-native plants for the plant-pollinator mutualism, most likely because of its relevance for the maintenance of terrestrial biodiversity and food production. However, the development of this research field has been thematically uneven and the overall evidence inconclusive. Many studies have focused on how non-native plants interact with native plants via pollinator sharing, which have allowed meta-analytical syntheses, whereas several others have looked at how frequently non-native plants integrate into native plant-pollinator webs and how they affect network structure. However, relatively few studies have addressed the consequences of invasive plants for pollinators. Overall, the research approach in this area has been predominantly phenomenological rather than mechanistic, which has hindered our understanding of apparently contradictory evidence. One key characteristic of invasive non-native plants that seems to mediate negative effects on the pollination mutualism is the high relative abundance that they reach at late stages of invasion. This high dominance is apparently the main trigger of all the disruptive direct and indirect effects that are discussed in this chapter. Finally, we identify several intriguing questions on the ecological and evolutionary consequences of invasive plants for the plant-pollinator mutualism waiting to be answered.


Author(s):  
Amy E. Kendig ◽  
S. Luke Flory ◽  
Erica M. Goss ◽  
Robert D. Holt ◽  
Keith Clay ◽  
...  

Abstract Plant-pathogen interactions occur throughout the process of plant invasion: pathogens can acutely influence plant survival and reproduction, while the large densities and spatial distributions of invasive plant species can influence pathogen communities. However, interactions between invasive plants and pathogens are often overlooked during the early stages of invasion. As with introductions of invasive plants, the introduction of agricultural crops to new areas can also generate novel host-pathogen interactions. The close monitoring of agricultural plants and resulting insights can inform hypotheses for invasive plants where research on pathogen interactions is lacking. This chapter reviews the known and hypothesized effects of pathogens on the invasion process and the effects of plant invasion on pathogens and infectious disease dynamics throughout the process of invasion. Initially, pathogens may inhibit the transport of potentially invasive plants. After arrival in a new range, pathogens can facilitate or inhibit establishment success of introduced plants depending on their relative impacts on the introduced plants and resident species. As invasive plants spread, they may encounter novel pathogens and alter the abundance and geographic range of pathogens. Pathogens can mediate interactions between invasive plants and resident species and may influence the long-term impacts of invasive plants on ecosystems. As invasive plants shift the composition of pathogen communities, resident species could be subject to higher disease risk. We highlight gaps in invasion biology research by providing examples from the agricultural literature and propose topics that have received little attention from either field.


Author(s):  
Marcelo A. Aizen ◽  
◽  
Carolina L. Morales ◽  

There has been growing interest in the consequences of invasive non-native plants for the plant-pollinator mutualism, most likely because of its relevance for the maintenance of terrestrial biodiversity and food production. However, the development of this research field has been thematically uneven and the overall evidence inconclusive. Many studies have focused on how non-native plants interact with native plants via pollinator sharing, which have allowed meta-analytical syntheses, whereas several others have looked at how frequently non-native plants integrate into native plant-pollinator webs and how they affect network structure. However, relatively few studies have addressed the consequences of invasive plants for pollinators. Overall, the research approach in this area has been predominantly phenomenological rather than mechanistic, which has hindered our understanding of apparently contradictory evidence. One key characteristic of invasive non-native plants that seems to mediate negative effects on the pollination mutualism is the high relative abundance that they reach at late stages of invasion. This high dominance is apparently the main trigger of all the disruptive direct and indirect effects that are discussed in this chapter. Finally, we identify several intriguing questions on the ecological and evolutionary consequences of invasive plants for the plant-pollinator mutualism waiting to be answered.


Botany ◽  
2009 ◽  
Vol 87 (3) ◽  
pp. 306-314 ◽  
Author(s):  
Robert S. Capers ◽  
Roslyn Selsky ◽  
Gregory J. Bugbee ◽  
Jason C. White

Invasive plants alter community structure, threatening ecosystem function and biodiversity, but little information is available on whether invasive species richness responds to environmental conditions in the same way that richness of native plants does. We surveyed submerged and floating-leaved plants in 99 Connecticut (northeast USA) lakes and ponds, collecting quantitative data on abundance and frequency. We used multiple linear and logistic regression to determine which environmental conditions were correlated with species richness of invasive and native plants. Independent variables included lake area, maximum depth, pH, alkalinity, conductivity, phosphorus concentration, productivity, and dominance (the proportional abundance of the most abundant and frequently found species), plus two estimates of human activity. Species richness of both native and invasive richness was correlated with alkalinity and human activity. Native richness also increased with water clarity, lake area, and productivity; invasive species richness also rose with pH. We found no evidence that richness of one group affected richness of the other. We also investigated patterns of dominance and found that native plants were as likely to become dominant as invasive species. Dominance occurred overwhelmingly in shallow lakes with high productivity.


1998 ◽  
Vol 4 (1) ◽  
pp. 21 ◽  
Author(s):  
Max Abensperg-Traun ◽  
Lyn Atkins ◽  
Richard Hobbs ◽  
Dion Steven

Exotic plants are a major threat to native plant diversity in Australia yet a generic model of the invasion of Australian ecosystems by exotic species is lacking because invasion levels differ with vegetation/soil type and environmental conditions. This study compared relative differences in exotic species invasion (percent cover, spp. richness) and the species richness of herbaceous native plants in two structurally very similar vegetation types, Gimlet Eucalyptus salubris and Wandoo E. capillosa woodlands in the Western Australian wheatbelt. For each woodland type, plant variables were measured for relatively undisturbed woodlands, woodlands with >30 years of livestock grazing history, and woodlands in road-verges. Grazed and road-verge Gimlet and Wandoo woodlands had significantly higher cover of exotic species, and lower species richness of native plants, compared with undisturbed Gimlet and Wandoo. Exotic plant invasion was significantly greater in Gimlet woodlands for both grazed (mean 78% cover) and road-verge sites (mean 42% cover) than in comparable sites in Wandoo woodlands (grazed sites 25% cover, road-verge sites 19% cover). There was no significant difference in the species richness of exotic plants between Wandoo and Gimlet sites for any of the three situations. Mean site richness of native plants was not significantly different between undisturbed Wandoo and undisturbed Gimlet woodlands. Undisturbed woodlands were significantly richer in plant species than grazed and road-verge woodlands for both woodland types. Grazed and road-verge Wandoo sites were significantly richer in plant species than communities in grazed and road-verge Gimlet. The percent cover of exotics was negatively correlated with total (native) plant species richness for both woodland types (Wandoo r = ?0.70, Gimlet r = ?0.87). Of the total native species recorded in undisturbed Gimlet, 83% and 61% were not recorded in grazed and road-verge Gimlet, respectively. This compared with 40% and 33% for grazed and road-verge Wandoo, respectively. Grazed Wandoo and grazed Gimlet sites had significantly fewer native plant species than did road-verge Wandoo and road-verge Gimlet sites. Ecosystem implications of differential invasions by exotic species, and the effects of grazing (disturbance) and other factors influencing susceptibility to exotic plant invasion (landscape, competition and allelopathy) on native species decline are discussed. Exclusion of livestock and adequate methods of control and prevention of further invasions by exotic plants are essential requirements for the conservation of these woodland systems.


Sign in / Sign up

Export Citation Format

Share Document