scholarly journals The Rapid Rise of Next-Generation Natural History

2021 ◽  
Vol 9 ◽  
Author(s):  
Marie I. Tosa ◽  
Emily H. Dziedzic ◽  
Cara L. Appel ◽  
Jenny Urbina ◽  
Aimee Massey ◽  
...  

Many ecologists have lamented the demise of natural history and have attributed this decline to a misguided view that natural history is outdated and unscientific. Although there is a perception that the focus in ecology and conservation have shifted away from descriptive natural history research and training toward hypothetico-deductive research, we argue that natural history has entered a new phase that we call “next-generation natural history.” This renaissance of natural history is characterized by technological and statistical advances that aid in collecting detailed observations systematically over broad spatial and temporal extents. The technological advances that have increased exponentially in the last decade include electronic sensors such as camera-traps and acoustic recorders, aircraft- and satellite-based remote sensing, animal-borne biologgers, genetics and genomics methods, and community science programs. Advances in statistics and computation have aided in analyzing a growing quantity of observations to reveal patterns in nature. These robust next-generation natural history datasets have transformed the anecdotal perception of natural history observations into systematically collected observations that collectively constitute the foundation for hypothetico-deductive research and can be leveraged and applied to conservation and management. These advances are encouraging scientists to conduct and embrace detailed descriptions of nature that remain a critically important component of the scientific endeavor. Finally, these next-generation natural history observations are engaging scientists and non-scientists alike with new documentations of the wonders of nature. Thus, we celebrate next-generation natural history for encouraging people to experience nature directly.

2018 ◽  
Vol 19 (1) ◽  
pp. 223-246 ◽  
Author(s):  
Saffron A.G. Willis-Owen ◽  
William O.C. Cookson ◽  
Miriam F. Moffatt

Asthma is a common, clinically heterogeneous disease with strong evidence of heritability. Progress in defining the genetic underpinnings of asthma, however, has been slow and hampered by issues of inconsistency. Recent advances in the tools available for analysis—assaying transcription, sequence variation, and epigenetic marks on a genome-wide scale—have substantially altered this landscape. Applications of such approaches are consistent with heterogeneity at the level of causation and specify patterns of commonality with a wide range of alternative disease traits. Looking beyond the individual as the unit of study, advances in technology have also fostered comprehensive analysis of the human microbiome and its varied roles in health and disease. In this article, we consider the implications of these technological advances for our current understanding of the genetics and genomics of asthma.


2019 ◽  
Vol 6 (3) ◽  
pp. 181748 ◽  
Author(s):  
Oliver R. Wearn ◽  
Paul Glover-Kapfer

Camera traps have become a ubiquitous tool in ecology and conservation. They are routinely deployed in wildlife survey and monitoring work, and are being advocated as a tool for planetary-scale biodiversity monitoring. The camera trap's widespread adoption is predicated on the assumption of its effectiveness, but the evidence base for this is lacking. Using 104 past studies, we recorded the qualitative overall recommendations made by study authors (for or against camera traps, or ambiguous), together with quantitative data on the effectiveness of camera traps (e.g. number of species detected or detection probabilities) relative to 22 other methods. Most studies recommended the use of camera traps overall and they were 39% more effective based on the quantitative data. They were significantly more effective compared with live traps (88%) and were otherwise comparable in effectiveness to other methods. Camera traps were significantly more effective than other methods at detecting a large number of species (31% more) and for generating detections of species (91% more). This makes camera traps particularly suitable for broad-spectrum biodiversity surveys. Film camera traps were found to be far less effective than digital models, which has led to an increase in camera trap effectiveness over time. There was also evidence from the authors that the use of attractants with camera traps reduced their effectiveness (counter to their intended effect), while the quantitative data indicated that camera traps were more effective in closed than open habitats. Camera traps are a highly effective wildlife survey tool and their performance will only improve with future technological advances. The images they produce also have a range of other benefits, for example as digital voucher specimens and as visual aids for outreach. The evidence-base supports the increasing use of camera traps and underlines their suitability for meeting the challenges of global-scale biodiversity monitoring.


2020 ◽  
Vol 5 (1) ◽  
pp. 14-21
Author(s):  
Jessica K Campos ◽  
Brian V Lien ◽  
Alice S Wang ◽  
Li-Mei Lin

Endovascular coil embolisation continues to evolve and remains a valid modality in managing ruptured and unruptured cerebral aneurysms. Technological advances in coil properties, adjunctive devices and interventional techniques continue to improve long-term aneurysm occlusion rates. This review elaborates on the latest advances in next-generation endovascular coils and adjunctive coiling techniques for treating cerebral aneurysms.


2020 ◽  
Author(s):  
Vaughn Shirey ◽  
Michael W. Belitz ◽  
Vijay Barve ◽  
Robert Guralnick

AbstractAggregate biodiversity data from museum specimens and community observations have promise for macroscale ecological analyses. Despite this, many groups are under-sampled, and sampling is not homogeneous across space. Here we used butterflies, the best documented group of insects, to examine inventory completeness across North America. We separated digitally accessible butterfly records into those from natural history collections and burgeoning community science observations to determine if these data sources have differential spatio-taxonomic biases. When we combined all data, we found startling under-sampling in regions with the most dramatic trajectories of climate change and across biomes. We also found support for the hypothesis that community science observations are filling more gaps in sampling but are more biased towards areas with the highest human footprint. Finally, we found that both types of occurrences have familial-level taxonomic completeness biases, in contrast to the hypothesis of less taxonomic bias in natural history collections data. These results suggest that higher inventory completeness, driven by rapid growth of community science observations, is partially offset by higher spatio-taxonomic biases. We use the findings here to provide recommendations on how to alleviate some of these gaps in the context of prioritizing global change research.


The Auk ◽  
2020 ◽  
Vol 137 (4) ◽  
Author(s):  
Alexander Charles Lees ◽  
Kenneth V Rosenberg ◽  
Viviana Ruiz-Gutierrez ◽  
Stuart Marsden ◽  
Thomas S Schulenberg ◽  
...  

Abstract Securing the long-term resilience of the world’s most speciose avifauna, that of the Neotropics, requires spatially and temporally explicit data to inform decisions. We examine gaps in our knowledge of the region’s avifauna through the lens of the biodiversity shortfall concept: the gaps between realized knowledge and complete knowledge. This framework serves as a useful tool to take stock of the last 25 yr of Neotropical ornithological work since the untimely death of Ted Parker. Here, we highlight 7 key shortfalls: taxonomy, distribution, abundance, evolutionary patterns, abiotic tolerances, species traits, and biotic interactions. We then propose an eighth—and new—“Parkerian” shortfall that reflects a lack of basic natural history knowledge key to understanding how species might respond to environmental challenges. Bridging this shortfall will help reverse declines by informing reintroduction, recovery network, and habitat restoration efforts. We discuss the challenges imposed by each shortfall and how strategies such as citizen-science initiatives and technological advances can either remedy or mitigate the uncertainty they generate.


2010 ◽  
Vol 43 (1) ◽  
pp. 3-12 ◽  
Author(s):  
Dale Halsey Lea ◽  
Heather Skirton ◽  
Catherine Y. Read ◽  
Janet K. Williams

2021 ◽  
Vol 14 ◽  
pp. e958
Author(s):  
Bernardo Ferraz ◽  
Pedro Souza-Dias ◽  
Flávia Virginio

Brazil is one of the most diverse countries in the world, hosting more than 250 known species of mantids (Mantodea). Studying natural history collections is crucial to identify, describe new taxa and solve taxonomic issues, improving the knowledge about the biodiversity. Here we document the transference of the mantids collection from the Entomological Collection of Instituto Butantan (São Paulo, Brazil) to the Museu Nacional (Rio de Janeiro, Brazil) and provide a morphological assessment on the 33 transferred mantids. We recognized 13 genera and 12 species, with diversified distribution in Brazil, although 6 specimens from 4 genera could not be identified at a specific level. The transference of this collection starts a new phase of restructuration and recognition of the Medical Entomology scope of the donor collection, aside from helping the rebuilt of the Entomological Collection of the Museu Nacional, lost in the 2018 fire, and allowing further researches within the group.


Sign in / Sign up

Export Citation Format

Share Document