scholarly journals Phosphorus Fluxes in a Temperate Forested Watershed: Canopy Leaching, Runoff Sources, and In-Stream Transformation

Author(s):  
Jakob Sohrt ◽  
David Uhlig ◽  
Klaus Kaiser ◽  
Friedhelm von Blanckenburg ◽  
Jan Siemens ◽  
...  
1995 ◽  
Vol 30 (2) ◽  
pp. 243-246 ◽  
Author(s):  
Heather Culbert ◽  
Robert France

Abstract In urban centres, leaves are customarily gathered and temporarily stored in large roadside piles prior to their transport to disposal sites. To simulate the release of total phosphorus to urban runoff, birch and trembling aspen leaves were leached with distilled water in laboratory flasks. There was no difference in rate of total phosphorus release between oven-dried and non-dried leaves. An empirical equation developed from these data and knowledge of the litterfall rates for southern Canada indicated that leaves yielded from 11 to 45 mg TP m−2 of forested watershed. This amount represents up to 5% of the total export of total phosphorus from urban catchments and has the potential to exacerbate eutrophication of municipal waters if leaf pickup is not promptly enforced.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 860
Author(s):  
Nicu Constantin Tudose ◽  
Mirabela Marin ◽  
Sorin Cheval ◽  
Cezar Ungurean ◽  
Serban Octavian Davidescu ◽  
...  

This study aims to build and test the adaptability and reliability of the Soil and Water Assessment Tool hydrological model in a small mountain forested watershed. This ungauged watershed covers 184 km2 and supplies 90% of blue water for the Brașov metropolitan area, the second largest metropolitan area of Romania. After building a custom database at the forest management compartment level, the SWAT model was run. Further, using the SWAT-CUP software under the SUFI2 algorithm, we identified the most sensitive parameters required in the calibration and validation stage. Moreover, the sensitivity analysis revealed that the surface runoff is mainly influenced by soil, groundwater and vegetation condition parameters. The calibration was carried out for 2001‒2010, while the 1996‒1999 period was used for model validation. Both procedures have indicated satisfactory performance and a lower uncertainty of model results in replicating river discharge compared with observed discharge. This research demonstrates that the SWAT model can be applied in small ungauged watersheds after an appropriate parameterisation of its databases. Furthermore, this tool is appropriate to support decision-makers in conceiving sustainable watershed management. It also guides prioritising the most suitable measures to increase the river basin resilience and ensure the water demand under climate change.


1980 ◽  
Vol 16 (2) ◽  
pp. 373-376 ◽  
Author(s):  
Karen A. Swanson ◽  
Arthur H. Johnson

1999 ◽  
Vol 29 (4) ◽  
pp. 497-508 ◽  
Author(s):  
Kiyokazu Ohrui ◽  
Myron J Mitchell ◽  
Joseph M Bischoff

Within a forest ecosystem in the Adirondack Mountains of New York, net N mineralization and nitrification rates were measured at different landscape positions (zones). Net N mineralization rates (0-15 cm depth) were less (39 kg N·ha-1 per year) within a wetland without alder and with a coniferous overstory than an upland conifer zone (82 kg N·ha-1 per year) and an upland hardwood zone (107 kg N·ha-1 per year). Net N mineralization rates (39 to 82 kg N·ha-1 per year) and the forest floor N concentrations (2.3 to 2.5%) were higher than values reported (1.2-29 kg N·ha-1 and 1.1-2.12%, respectively) for other spruce forests. The net nitrification rates were higher at the upland hardwood zone (29 kg N·ha-1 per year) than the upland conifer zone (2 kg N·ha-1 per year). The wetland conifer zone without alders had an intermediate rate of net nitrification (13 kg N·ha-1 per year) compared with the upland zones. The presence of white alder (Alnus incana (L.) Moench) in the wetland increased the NO3- content and net nitrification rate of the soil.


Sign in / Sign up

Export Citation Format

Share Document