scholarly journals Mitigation Impact of Different Harvest Scenarios of Finnish Forests That Account for Albedo, Aerosols, and Trade-Offs of Carbon Sequestration and Avoided Emissions

2020 ◽  
Vol 3 ◽  
Author(s):  
Tuomo Kalliokoski ◽  
Jaana Bäck ◽  
Michael Boy ◽  
Markku Kulmala ◽  
Nea Kuusinen ◽  
...  
2021 ◽  
Author(s):  
Tiantian Chen ◽  
Li Peng ◽  
Qiang Wang

Abstract The Grain to Green Program (GTGP), as a policy tool for advancing ecological progress, has been operating for 20 years and has played an important role in improving ecosystem service values. However, there are few studies on the trade-off/synergy changes in ecosystem services during the implementation of the GTGP and how to select the optimal scheme for regional ecological security based on the trade-off relationship. Thus, we took the Chengdu-Chongqing urban agglomeration (CCUA) in southwestern China as the study area; we used multisource data and the corresponding models and methods to estimate the regional food production, carbon sequestration, water yield, soil conservation and habitat quality services. Then, we clarified the trade-off/synergy relationships among ecosystem services from 2000 to 2015 by spatial analysis and statistical methods and evaluated the influential mechanism of the GTGP on trade-offs between ecosystem services. Finally, different risk scenarios were constructed by the ordered weighted average algorithm (OWA), and the regional ecological security pattern was simulated under the principle of the best protection efficiency and the highest trade-off degree. We found that (1) the trade-offs/synergies of regional ecosystem services changed significantly from 2000 to 2015. Among them, food production, water yield and soil conservation have always had trade-off relationships, while carbon sequestration, soil conservation and habitat quality have all had synergistic relationships. The relationships between carbon sequestration and water yield and food production changed from non-correlated to trade-off/synergistic, and the relationship between habitat quality and food production and water yield was not obvious. (2) Except for carbon sequestration service, the trade-off intensity between other ecosystem services decreased, indicating that the change trend of ecosystem services in the same direction was obvious. (3) The GTGP has been an important factor affecting the trade-off intensity of regional ecosystem services. On the one hand, it has strengthened the synergistic relationships among carbon sequestration, soil conservation and habitat quality; on the other hand, it has increased the constraints of water resources on soil conservation and vegetation restoration. (4) The decision risk coefficient α = 1.6 was the most suitable scenario, the total amount of regional ecosystem services was high, and the allocation was balanced under this scenario. The ecological security area corresponding to this scenario was also the area with high carbon sequestration and habitat quality services. The purpose of this study was to provide a scientific reference for the precise implementation of the GTGP.


2007 ◽  
Vol 248 (1-2) ◽  
pp. 64-79 ◽  
Author(s):  
Rupert Seidl ◽  
Werner Rammer ◽  
Dietmar Jäger ◽  
William S. Currie ◽  
Manfred J. Lexer

2014 ◽  
Vol 45 (1) ◽  
pp. 105-131 ◽  
Author(s):  
Patrick Bottazzi ◽  
David Crespo ◽  
Harry Soria ◽  
Hy Dao ◽  
Marcelo Serrudo ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Domenico D’Alelio ◽  
Luca Russo ◽  
Bruno Hay Mele ◽  
Francesco Pomati

The study of ecosystem services requires the integration of different observational points. This is particularly true in Water, as this element continuously cycles, increasing chances of interaction among services originating in different ecosystems. However, aquatic scientists historically approached the study of inland/freshwater and open/marine waters in different ways and this cultural division potentially hampers integrative approaches. Herein, we explored the literature pertaining to ecosystem services across the last 23 years, analysing 4,590 aquatic papers. By aggregating and intersecting topics included in this papers’ collection using text-mining and topical network approaches, we saw that the study of local environmental conditions (e.g., river estuary management) and synergies and trade-offs between services (e.g., carbon sequestration and water purification) can display several potential conceptual links between freshwater and marine sciences. Our analyses suggest that to intersect ecosystem services across the aquatic continuum, the conceptual integration between marine and freshwater science must be reinforced, especially at the interface between different “salinity realms.” Such integration should adopt a “system thinking” perspective, in which the focus is on multiple socio-ecological processes giving rise to interactions that are (i) biologically mediated, (ii) potentially conflicting, and (iii) entangled within networks.


2015 ◽  
Vol 6 (2) ◽  
pp. 745-768 ◽  
Author(s):  
S. Olin ◽  
M. Lindeskog ◽  
T. A. M. Pugh ◽  
G. Schurgers ◽  
D. Wårlind ◽  
...  

Abstract. Croplands are vital ecosystems for human well-being and provide important ecosystem services such as crop yields, retention of nitrogen and carbon storage. On large (regional to global)-scale levels, assessment of how these different services will vary in space and time, especially in response to cropland management, are scarce. We explore cropland management alternatives and the effect these can have on future C and N pools and fluxes using the land-use-enabled dynamic vegetation model LPJ-GUESS (Lund–Potsdam–Jena General Ecosystem Simulator). Simulated crop production, cropland carbon storage, carbon sequestration and nitrogen leaching from croplands are evaluated and discussed. Compared to the version of LPJ-GUESS that does not include land-use dynamics, estimates of soil carbon stocks and nitrogen leaching from terrestrial to aquatic ecosystems were improved. Our model experiments allow us to investigate trade-offs between these ecosystem services that can be provided from agricultural fields. These trade-offs are evaluated for current land use and climate and further explored for future conditions within the two future climate change scenarios, RCP (Representative Concentration Pathway) 2.6 and 8.5. Our results show that the potential for carbon sequestration due to typical cropland management practices such as no-till management and cover crops proposed in previous studies is not realised, globally or over larger climatic regions. Our results highlight important considerations to be made when modelling C–N interactions in agricultural ecosystems under future environmental change and the effects these have on terrestrial biogeochemical cycles.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
W. Amelung ◽  
D. Bossio ◽  
W. de Vries ◽  
I. Kögel-Knabner ◽  
J. Lehmann ◽  
...  

Abstract Sustainable soil carbon sequestration practices need to be rapidly scaled up and implemented to contribute to climate change mitigation. We highlight that the major potential for carbon sequestration is in cropland soils, especially those with large yield gaps and/or large historic soil organic carbon losses. The implementation of soil carbon sequestration measures requires a diverse set of options, each adapted to local soil conditions and management opportunities, and accounting for site-specific trade-offs. We propose the establishment of a soil information system containing localised information on soil group, degradation status, crop yield gap, and the associated carbon-sequestration potentials, as well as the provision of incentives and policies to translate management options into region- and soil-specific practices.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Bastian Bertsch-Hoermann ◽  
Claudine Egger ◽  
Veronika Gaube ◽  
Simone Gingrich

AbstractMountain agroecosystems deliver essential ecosystem services to society but are prone to climate change as well as socio-economic pressures, making multi-functional land systems increasingly central to sustainable mountain land use policy. Agroforestry, the combination of woody vegetation with crops and/or livestock, is expected to simultaneously increase provisioning and regulating ecosystem services, but knowledge gaps concerning trade-offs exist especially in temperate industrialized and alpine regions. Here, we quantify the aboveground carbon (C) dynamics of a hypothetical agroforestry implementation in the Austrian long-term socio-ecological research region Eisenwurzen from 2020 to 2050. We develop three land use scenarios to differentiate conventional agriculture from an immediate and a gradual agroforestry implementation, integrate data from three distinct models (Yield-SAFE, SECLAND, MIAMI), and advance the socio-ecological indicator framework Human Appropriation of Net Primary Production (HANPP) to assess trade-offs between biomass provision and carbon sequestration. Results indicate that agroforestry strongly decreases HANPP because of a reduction in biomass harvest by up to − 47% and a simultaneous increase in actual net primary production by up to 31%, with a large amount of carbon sequestered in perennial biomass by up to 3.4 t C ha-1 yr-1. This shows that a hypothetical transition to agroforestry in the Eisenwurzen relieves the agroecosystem from human-induced pressure but results in significant trade-offs between biomass provision and carbon sequestration. We thus conclude that while harvest losses inhibit large-scale implementation in intensively used agricultural regions, agroforestry constitutes a valuable addition to sustainable land use policy, in particular when affecting extensive pastures and meadows in alpine landscapes.


Sign in / Sign up

Export Citation Format

Share Document