scholarly journals The GUL-1 Protein Binds Multiple RNAs Involved in Cell Wall Remodeling and Affects the MAK-1 Pathway in Neurospora crassa

2021 ◽  
Vol 2 ◽  
Author(s):  
Inbal Herold ◽  
Avihai Zolti ◽  
Marisela Garduño-Rosales ◽  
Zheng Wang ◽  
Francesc López-Giráldez ◽  
...  

The Neurospora crassa GUL-1 is part of the COT-1 pathway, which plays key roles in regulating polar hyphal growth and cell wall remodeling. We show that GUL-1 is a bona fide RNA-binding protein (RBP) that can associate with 828 “core” mRNA species. When cell wall integrity (CWI) is challenged, expression of over 25% of genomic RNA species are modulated (2,628 mRNAs, including the GUL-1 mRNA). GUL-1 binds mRNAs of genes related to translation, cell wall remodeling, circadian clock, endoplasmic reticulum (ER), as well as CWI and MAPK pathway components. GUL-1 interacts with over 100 different proteins, including stress-granule and P-body proteins, ER components and components of the MAPK, COT-1, and STRIPAK complexes. Several additional RBPs were also shown to physically interact with GUL-1. Under stress conditions, GUL-1 can localize to the ER and affect the CWI pathway—evident via altered phosphorylation levels of MAK-1, interaction with mak-1 transcript, and involvement in the expression level of the transcription factor adv-1. We conclude that GUL-1 functions in multiple cellular processes, including the regulation of cell wall remodeling, via a mechanism associated with the MAK-1 pathway and stress-response.

2011 ◽  
Vol 10 (10) ◽  
pp. 1340-1347 ◽  
Author(s):  
Wataru Ito ◽  
Xia Li ◽  
Kaoru Irie ◽  
Tomoaki Mizuno ◽  
Kenji Irie

ABSTRACT The Saccharomyces cerevisiae RNA-binding protein Khd1/Hek2 associates with hundreds of potential mRNA targets preferentially, including the mRNAs encoding proteins localized to the cell wall and plasma membrane. We have previously revealed that Khd1 positively regulates expression of MTL1 mRNA encoding a membrane sensor in the cell wall integrity (CWI) pathway. However, a khd1 Δ mutation has no detectable phenotype on cell wall synthesis. Here we show that the khd1 Δ mutation causes a severe cell lysis when combined with the deletion of the CCR4 gene encoding a cytoplasmic deadenylase. We identified the ROM2 mRNA, encoding a guanine nucleotide exchange factor (GEF) for Rho1, as a target for Khd1 and Ccr4. The ROM2 mRNA level was decreased in the khd1 Δ ccr4 Δ mutant, and ROM2 overexpression suppressed the cell lysis of the khd1 Δ ccr4 Δ mutant. We also found that Ccr4 negatively regulates expression of the LRG1 mRNA encoding a GTPase-activating protein (GAP) for Rho1. The LRG1 mRNA level was increased in the ccr4 Δ and khd1 Δ ccr4 Δ mutants, and deletion of LRG1 suppressed the cell lysis of the khd1 Δ ccr4 Δ mutant. Our results presented here suggest that Khd1 and Ccr4 modulate a signal from Rho1 in the CWI pathway by regulating the expression of RhoGEF and RhoGAP.


2018 ◽  
Vol 23 (12) ◽  
pp. 988-997 ◽  
Author(s):  
Nguyen Thi Minh Viet ◽  
Duong Long Duy ◽  
Kazuhiro Saito ◽  
Kaoru Irie ◽  
Yasuyuki Suda ◽  
...  

Author(s):  
Arnika Przybylska ◽  
Maciej Spychalski

Abstract Background Meloidogyne arenaria is an economically important root-knot nematode (RKN) species whose hosts include maize (Zea mays). The plant response to RKN infection activates many cellular mechanisms, among others, changes in the expression level of genes encoding transcription and elongation factors as well as proteins related to cell wall organization. Methods and results This study is aimed at characterization of expression of selected transcription and elongation factors encoding the genes WRKY53, EF1a, and EF1b as well as the ones encoding two proteins associated with cell wall functioning (glycine-rich RNA-binding protein, GRP and polygalacturonase, PG) during the maize response to M. arenaria infection. The changes in the relative level of expression of genes encoding these proteins were assessed using the reverse transcription-quantitative real-time PCR. The material studied were leaves and root samples collected from four maize varieties showing different susceptibilities toward M. arenaria infection, harvested at three different time points. Significant changes in the expression level of GRP between susceptible and tolerant varieties were observed. Conclusions Results obtained in the study suggest pronounced involvement of glycine-rich RNA-binding protein and EF1b in the maize response and resistance to RKN.


2020 ◽  
Author(s):  
V Stein ◽  
B Blank-Landeshammer ◽  
K Müntjes ◽  
R Märker ◽  
I Teichert ◽  
...  

AbstractThe striatin-interacting phosphatase and kinase (STRIPAK) multi-subunit signaling complex is highly conserved within eukaryotes. In fungi, STRIPAK controls multicellular development, morphogenesis, pathogenicity, and cell-cell recognition, while in humans, certain diseases are related to this signaling complex. To date, phosphorylation and dephosphorylation targets of STRIPAK are still widely unknown in microbial as well as animal systems. Here, we provide an extended global proteome and phosphoproteome study using the wild type as well as STRIPAK single and double deletion mutants from the filamentous fungus Sordaria macrospora. Notably, in the deletion mutants, we identified the differential phosphorylation of 129 proteins, of which 70 phosphorylation sites were previously unknown. Included in the list of STRIPAK targets are eight proteins with RNA recognition motifs (RRMs) including GUL1. Knockout mutants and complemented transformants clearly show that GUL1 affects hyphal growth and sexual development. To assess the role of GUL1 phosphorylation on fungal development, we constructed phospho-mimetic and -deficient mutants of GUL1 residues S180, S216, and S1343. While the S1343 mutants were indistinguishable from wildtype, phospho-deficiency of S180 and S216 resulted in a drastic reduction in hyphal growth and phospho-deficiency of S216 also affects sexual fertility. These results thus suggest that differential phosphorylation of GUL1 regulates developmental processes such as fruiting body maturation and hyphal morphogenesis. Moreover, genetic interaction studies provide strong evidence that GUL1 is not an integral subunit of STRIPAK. Finally, fluorescence microcopy revealed that GUL1 co-localizes with endosomal marker proteins and shuttles on endosomes. Here, we provide a new mechanistic model that explains how STRIPAK-dependent and - independent phosphorylation of GUL1 regulates sexual development and asexual growth.Author SummaryIn eukaryotes, the striatin-interacting phosphatase and kinase (STRIPAK) multi-subunit signaling complex controls a variety of developmental processes, and the lack of single STRIPAK subunits is associated with severe developmental defects and diseases. However, in humans, animals, as well as fungal microbes, the phosphorylation and dephosphorylation targets of STRIPAK are still largely unknown. The filamentous fungus Sordaria macrospora is a well-established model system used to study the function of STRIPAK, since a collection of STRIPAK mutants is experimentally accessible. We previously established an isobaric tag for relative and absolute quantification (iTRAQ)-based proteomic and phosphoproteomic analysis to identify targets of STRIPAK. Here, we investigate mutants that lack one or two STRIPAK subunits. Our analysis resulted in the identification of 129 putative phosphorylation targets of STRIPAK including GUL1, a homolog of the RNA-binding protein SSD1 from yeast. Using fluorescence microscopy, we demonstrate that GUL1 shuttles on endosomes. We also investigated deletion, phospho-mimetic, and -deletion mutants and revealed that GUL1 regulates sexual and asexual development in a phosphorylation-dependent manner. Collectively, our comprehensive genetic and cellular analysis provides new fundamental insights into the mechanism of how GUL1, as a STRIPAK target, controls multiple cellular functions.


mBio ◽  
2020 ◽  
Vol 11 (5) ◽  
Author(s):  
Frances Taschuk ◽  
Iulia Tapescu ◽  
Ryan H. Moy ◽  
Sara Cherry

ABSTRACT DEAD box RNA helicases regulate diverse facets of RNA biology. Proteins of this family carry out essential cellular functions, and emerging literature is revealing additional roles in immune defense. Using RNA interference screening, we identified an evolutionarily conserved antiviral role for the helicase DDX56 against the alphavirus Sindbis virus (SINV), a mosquito-transmitted pathogen that infects humans. Depletion of DDX56 enhanced infection in Drosophila and human cells. Furthermore, we found that DDX56 also controls the emerging alphavirus chikungunya virus (CHIKV) through an interferon-independent mechanism. Using cross-linking immunoprecipitation (CLIP-Seq), we identified a predicted stem-loop on the viral genomic RNA bound by DDX56. Mechanistically, we found that DDX56 levels increase in the cytoplasm during CHIKV infection. In the cytoplasm, DDX56 impacts the earliest step in the viral replication cycle by binding and destabilizing the incoming viral genomic RNA, thereby attenuating infection. Thus, DDX56 is a conserved antiviral RNA binding protein that controls alphavirus infection. IMPORTANCE Arthropod-borne viruses are diverse pathogens and include the emerging virus chikungunya virus, which is associated with human disease. Through genetic screening, we found that the conserved RNA binding protein DDX56 is antiviral against chikungunya virus in insects and humans. DDX56 relocalizes from the nucleus to the cytoplasm, where it binds to a stem-loop in the viral genome and destabilizes incoming genomes. Thus, DDX56 is an evolutionarily conserved antiviral factor that controls alphavirus infection.


mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Yang Li ◽  
Jens Heller ◽  
A. Pedro Gonçalves ◽  
N. Louise Glass

ABSTRACT Filamentous fungi undergo somatic cell fusion to create a syncytial, interconnected hyphal network which confers a fitness benefit during colony establishment. However, barriers to somatic cell fusion between genetically different cells have evolved that reduce invasion by parasites or exploitation by maladapted genetic entities (cheaters). Here, we identified a predicted mannosyltransferase, glycosyltransferase family 69 protein (GT69-2) that was required for somatic cell fusion in Neurospora crassa. Cells lacking GT69-2 prematurely ceased chemotropic signaling and failed to complete cell wall dissolution and membrane merger in pairings with wild-type cells or between Δgt69-2 cells (self fusion). However, loss-of-function mutations in the linked regulator of cell fusion and cell wall remodeling-1 (rfw-1) locus suppressed the self-cell-fusion defects of Δgt69-2 cells, although Δgt69-2 Δrfw-1 double mutants still failed to undergo fusion with wild-type cells. Both GT69-2 and RFW-1 localized to the Golgi apparatus. Genetic analyses indicated that RFW-1 negatively regulates cell wall remodeling-dependent processes, including cell wall dissolution during cell fusion, separation of conidia during asexual sporulation, and conidial germination. GT69-2 acts as an antagonizer to relieve or prevent negative functions on cell fusion by RFW-1. In Neurospora species and N. crassa populations, alleles of gt69-2 were highly polymorphic and fell into two discrete haplogroups. In all isolates within haplogroup I, rfw-1 was conserved and linked to gt69-2. All isolates within haplogroup II lacked rfw-1. These data indicated that gt69-2/rfw-1 are under balancing selection and provide new mechanisms regulating cell wall remodeling during cell fusion and conidial separation. IMPORTANCE Cell wall remodeling is a dynamic process that balances cell wall integrity versus cell wall dissolution. In filamentous fungi, cell wall dissolution is required for somatic cell fusion and conidial separation during asexual sporulation. In the filamentous fungus Neurospora crassa, allorecognition checkpoints regulate the cell fusion process between genetically different cells. Our study revealed two linked loci with transspecies polymorphisms and under coevolution, rfw-1 and gt69-2, which form a coordinated system to regulate cell wall remodeling during somatic cell fusion, conidial separation, and asexual spore germination. RFW-1 acts as a negative regulator of these three processes, while GT69-2 functions antagonistically to RFW-1. Our findings provide new insight into the mechanisms involved in regulation of fungal cell wall remodeling during growth and development.


2020 ◽  
Author(s):  
Lin-Chun Chang ◽  
Yu-Chieh Wu ◽  
Yu-Yun Chang ◽  
Fang-Jen Lee

AbstractThe yeast cell wall integrity (CWI) MAPK pathway is a signaling cascade function in maintaining cell wall integrity under stressful environmental conditions. Recently, the activity and signaling of Slt2p (Mpk1p) MAP kinase has been shown to control assembly of the processing body (P-body) upon cell wall stresses, implicating its posttranscriptional role in decay of cell wall mRNAs. However, how Slt2p MAP kinase directly regulates the stability of cell wall transcripts during cell wall stress remains unclear. Here, we reported that the RNA-binding protein Rbp1p (Ngr1p) is a downstream effector and target of Slt2p MAP kinase during activation of the cell wall stress signaling cascade. In addition to the well-defined target mitochondrial porin mRNA, we found that Rbp1p also negatively regulates the stability of a subset of Slt2p-regulated cell wall transcripts. Deletion of RBP1 increases the level of cell wall transcripts and partially suppresses the hypersensitivity of the slt2Δ deletion strain to cell wall damage. Slt2p is necessary for cell wall stress-induced stabilization of cell wall transcripts. Deletion of RBP1 compromises the destabilization of cell wall transcripts in slt2Δ mutants under cell wall stress. Notably, C-terminal deleted Slt2p impairs its function in promoting turnover of the Rbp1p protein and fails to stabilize cell wall transcripts, although it can complement the growth defect of the slt2Δ strain upon cell wall stress. Altogether, our results demonstrate that MAP kinase Slt2p attenuates CWI mRNA decay in response to cell wall damage by downregulating the activity of the RNA-binding protein Rbp1p.


Sign in / Sign up

Export Citation Format

Share Document