scholarly journals Conditional Generative Adversarial Networks for Individualized Treatment Effect Estimation and Treatment Selection

2020 ◽  
Vol 11 ◽  
Author(s):  
Qiyang Ge ◽  
Xuelin Huang ◽  
Shenying Fang ◽  
Shicheng Guo ◽  
Yuanyuan Liu ◽  
...  

Treatment response is heterogeneous. However, the classical methods treat the treatment response as homogeneous and estimate the average treatment effects. The traditional methods are difficult to apply to precision oncology. Artificial intelligence (AI) is a powerful tool for precision oncology. It can accurately estimate the individualized treatment effects and learn optimal treatment choices. Therefore, the AI approach can substantially improve progress and treatment outcomes of patients. One AI approach, conditional generative adversarial nets for inference of individualized treatment effects (GANITE) has been developed. However, GANITE can only deal with binary treatment and does not provide a tool for optimal treatment selection. To overcome these limitations, we modify conditional generative adversarial networks (MCGANs) to allow estimation of individualized effects of any types of treatments including binary, categorical and continuous treatments. We propose to use sparse techniques for selection of biomarkers that predict the best treatment for each patient. Simulations show that MCGANs outperform seven other state-of-the-art methods: linear regression (LR), Bayesian linear ridge regression (BLR), k-Nearest Neighbor (KNN), random forest classification [RF (C)], random forest regression [RF (R)], logistic regression (LogR), and support vector machine (SVM). To illustrate their applications, the proposed MCGANs were applied to 256 patients with newly diagnosed acute myeloid leukemia (AML) who were treated with high dose ara-C (HDAC), Idarubicin (IDA) and both of these two treatments (HDAC+IDA) at M. D. Anderson Cancer Center. Our results showed that MCGAN can more accurately and robustly estimate the individualized treatment effects than other state-of-the art methods. Several biomarkers such as GSK3, BILIRUBIN, SMAC are identified and a total of 30 biomarkers can explain 36.8% of treatment effect variation.

2020 ◽  
Author(s):  
Qiyang Ge ◽  
Xuelin Huang ◽  
Shenying Fang ◽  
Shihcheng Guo ◽  
yuanyuan Liu ◽  
...  

Treatment response is heterogeneous. However the classical methods treat the treatment response as homogeneous and estimate the average treatment effects. The traditional methods are difficult to apply to precision oncology. The artificial intelligence (AI) is a powerful tool for precision oncology. It can accurately estimate the individualized treatment effects and learn optimal treatment choices. Therefore, the AI approach can substantially improve progress and treatment outcomes of patients. As one of AI approach, conditional generative adversarial nets for inference of individualized treatment effects (GANITE) have been developed. However, the GANITE can only deal with binary treatment and does not provide a tool for optimal treatment selection. To overcome these limitations, we modify conditional generative adversarial networks (MCGANs) to allow estimation of individualized effects of any types of treatments including binary, categorical and continuous treatments. We propose to use sparse techniques for selection of biomarkers that predict the best treatment for each patient. Simulations show that the CGANs outperform seven other state-of-the-art methods: linear regression (LR), Bayesian linear ridge regression (BLR), KNN, random forest classification (RF (C)), random forest regression (RF (R)), logistic regression (LogR) and support vector machine (SVM). To illustrate their applications, the proposed CGANs were applied to 256 patients with newly diagnosed acute myeloid leukemia (AML) who were treated with high dose ara-C (HDAC), Idarubicin (IDA) and both of these two treatments (HDAC+IDA) at M. D. Anderson Cancer Center. Our results showed that the MCGAN can more accurately and robustly estimate the individualized treatment effects than other state-of-the art methods. Several biomarkers such as GSK3, BILIRUBIN, SMAC are identified and a total of 30 biomarkers can explain 36.8% of treatment effect variation.


Biometrika ◽  
2020 ◽  
Author(s):  
Oliver Dukes ◽  
Stijn Vansteelandt

Summary Eliminating the effect of confounding in observational studies typically involves fitting a model for an outcome adjusted for covariates. When, as often, these covariates are high-dimensional, this necessitates the use of sparse estimators, such as the lasso, or other regularization approaches. Naïve use of such estimators yields confidence intervals for the conditional treatment effect parameter that are not uniformly valid. Moreover, as the number of covariates grows with the sample size, correctly specifying a model for the outcome is nontrivial. In this article we deal with both of these concerns simultaneously, obtaining confidence intervals for conditional treatment effects that are uniformly valid, regardless of whether the outcome model is correct. This is done by incorporating an additional model for the treatment selection mechanism. When both models are correctly specified, we can weaken the standard conditions on model sparsity. Our procedure extends to multivariate treatment effect parameters and complex longitudinal settings.


2020 ◽  
Author(s):  
Alceu Bissoto ◽  
Sandra Avila

Melanoma is the most lethal type of skin cancer. Early diagnosis is crucial to increase the survival rate of those patients due to the possibility of metastasis. Automated skin lesion analysis can play an essential role by reaching people that do not have access to a specialist. However, since deep learning became the state-of-the-art for skin lesion analysis, data became a decisive factor in pushing the solutions further. The core objective of this M.Sc. dissertation is to tackle the problems that arise by having limited datasets. In the first part, we use generative adversarial networks to generate synthetic data to augment our classification model’s training datasets to boost performance. Our method generates high-resolution clinically-meaningful skin lesion images, that when compound our classification model’s training dataset, consistently improved the performance in different scenarios, for distinct datasets. We also investigate how our classification models perceived the synthetic samples and how they can aid the model’s generalization. Finally, we investigate a problem that usually arises by having few, relatively small datasets that are thoroughly re-used in the literature: bias. For this, we designed experiments to study how our models’ use data, verifying how it exploits correct (based on medical algorithms), and spurious (based on artifacts introduced during image acquisition) correlations. Disturbingly, even in the absence of any clinical information regarding the lesion being diagnosed, our classification models presented much better performance than chance (even competing with specialists benchmarks), highly suggesting inflated performances.


2019 ◽  
Vol 9 (18) ◽  
pp. 3908 ◽  
Author(s):  
Jintae Kim ◽  
Shinhyeok Oh ◽  
Oh-Woog Kwon ◽  
Harksoo Kim

To generate proper responses to user queries, multi-turn chatbot models should selectively consider dialogue histories. However, previous chatbot models have simply concatenated or averaged vector representations of all previous utterances without considering contextual importance. To mitigate this problem, we propose a multi-turn chatbot model in which previous utterances participate in response generation using different weights. The proposed model calculates the contextual importance of previous utterances by using an attention mechanism. In addition, we propose a training method that uses two types of Wasserstein generative adversarial networks to improve the quality of responses. In experiments with the DailyDialog dataset, the proposed model outperformed the previous state-of-the-art models based on various performance measures.


Author(s):  
Chaowei Xiao ◽  
Bo Li ◽  
Jun-yan Zhu ◽  
Warren He ◽  
Mingyan Liu ◽  
...  

Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial exam- ples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply Adv- GAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.


Author(s):  
Yao Ni ◽  
Dandan Song ◽  
Xi Zhang ◽  
Hao Wu ◽  
Lejian Liao

Generative adversarial networks (GANs) have shown impressive results, however, the generator and the discriminator are optimized in finite parameter space which means their performance still need to be improved. In this paper, we propose a novel approach of adversarial training between one generator and an exponential number of critics which are sampled from the original discriminative neural network via dropout. As discrepancy between outputs of different sub-networks of a same sample can measure the consistency of these critics, we encourage the critics to be consistent to real samples and inconsistent to generated samples during training, while the generator is trained to generate consistent samples for different critics. Experimental results demonstrate that our method can obtain state-of-the-art Inception scores of 9.17 and 10.02 on supervised CIFAR-10 and unsupervised STL-10 image generation tasks, respectively, as well as achieve competitive semi-supervised classification results on several benchmarks. Importantly, we demonstrate that our method can maintain stability in training and alleviate mode collapse.


Author(s):  
Zhong Qian ◽  
Peifeng Li ◽  
Yue Zhang ◽  
Guodong Zhou ◽  
Qiaoming Zhu

Event factuality identification is an important semantic task in NLP. Traditional research heavily relies on annotated texts. This paper proposes a two-step framework, first extracting essential factors related with event factuality from raw texts as the input, and then identifying the factuality of events via a Generative Adversarial Network with Auxiliary Classification (AC-GAN). The use of AC-GAN allows the model to learn more syntactic information and address the imbalance among factuality values. Experimental results on FactBank show that our method significantly outperforms several state-of-the-art baselines, particularly on events with embedded sources, speculative and negative factuality values.


2021 ◽  
Vol 40 ◽  
pp. 03017
Author(s):  
Amogh Parab ◽  
Ananya Malik ◽  
Arish Damania ◽  
Arnav Parekhji ◽  
Pranit Bari

Through various examples in history such as the early man’s carving on caves, dependence on diagrammatic representations, the immense popularity of comic books we have seen that vision has a higher reach in communication than written words. In this paper, we analyse and propose a new task of transfer of information from text to image synthesis. Through this paper we aim to generate a story from a single sentence and convert our generated story into a sequence of images. We plan to use state of the art technology to implement this task. With the advent of Generative Adversarial Networks text to image synthesis have found a new awakening. We plan to take this task a step further, in order to automate the entire process. Our system generates a multi-lined story given a single sentence using a deep neural network. This story is then fed into our networks of multiple stage GANs inorder to produce a photorealistic image sequence.


Sign in / Sign up

Export Citation Format

Share Document