scholarly journals Improving Skin Lesion Analysis with Generative Adversarial Networks

Author(s):  
Alceu Bissoto ◽  
Sandra Avila

Melanoma is the most lethal type of skin cancer. Early diagnosis is crucial to increase the survival rate of those patients due to the possibility of metastasis. Automated skin lesion analysis can play an essential role by reaching people that do not have access to a specialist. However, since deep learning became the state-of-the-art for skin lesion analysis, data became a decisive factor in pushing the solutions further. The core objective of this M.Sc. dissertation is to tackle the problems that arise by having limited datasets. In the first part, we use generative adversarial networks to generate synthetic data to augment our classification model’s training datasets to boost performance. Our method generates high-resolution clinically-meaningful skin lesion images, that when compound our classification model’s training dataset, consistently improved the performance in different scenarios, for distinct datasets. We also investigate how our classification models perceived the synthetic samples and how they can aid the model’s generalization. Finally, we investigate a problem that usually arises by having few, relatively small datasets that are thoroughly re-used in the literature: bias. For this, we designed experiments to study how our models’ use data, verifying how it exploits correct (based on medical algorithms), and spurious (based on artifacts introduced during image acquisition) correlations. Disturbingly, even in the absence of any clinical information regarding the lesion being diagnosed, our classification models presented much better performance than chance (even competing with specialists benchmarks), highly suggesting inflated performances.

2020 ◽  
pp. 1-13
Author(s):  
Yundong Li ◽  
Yi Liu ◽  
Han Dong ◽  
Wei Hu ◽  
Chen Lin

The intrusion detection of railway clearance is crucial for avoiding railway accidents caused by the invasion of abnormal objects, such as pedestrians, falling rocks, and animals. However, detecting intrusions using deep learning methods from infrared images captured at night remains a challenging task because of the lack of sufficient training samples. To address this issue, a transfer strategy that migrates daytime RGB images to the nighttime style of infrared images is proposed in this study. The proposed method consists of two stages. In the first stage, a data generation model is trained on the basis of generative adversarial networks using RGB images and a small number of infrared images, and then, synthetic samples are generated using a well-trained model. In the second stage, a single shot multibox detector (SSD) model is trained using synthetic data and utilized to detect abnormal objects from infrared images at nighttime. To validate the effectiveness of the proposed method, two groups of experiments, namely, railway and non-railway scenes, are conducted. Experimental results demonstrate the effectiveness of the proposed method, and an improvement of 17.8% is achieved for object detection at nighttime.


2019 ◽  
Vol 9 (18) ◽  
pp. 3908 ◽  
Author(s):  
Jintae Kim ◽  
Shinhyeok Oh ◽  
Oh-Woog Kwon ◽  
Harksoo Kim

To generate proper responses to user queries, multi-turn chatbot models should selectively consider dialogue histories. However, previous chatbot models have simply concatenated or averaged vector representations of all previous utterances without considering contextual importance. To mitigate this problem, we propose a multi-turn chatbot model in which previous utterances participate in response generation using different weights. The proposed model calculates the contextual importance of previous utterances by using an attention mechanism. In addition, we propose a training method that uses two types of Wasserstein generative adversarial networks to improve the quality of responses. In experiments with the DailyDialog dataset, the proposed model outperformed the previous state-of-the-art models based on various performance measures.


2020 ◽  
Vol 34 (07) ◽  
pp. 10729-10736 ◽  
Author(s):  
Yu Dong ◽  
Yihao Liu ◽  
He Zhang ◽  
Shifeng Chen ◽  
Yu Qiao

Recently, convolutional neural networks (CNNs) have achieved great improvements in single image dehazing and attained much attention in research. Most existing learning-based dehazing methods are not fully end-to-end, which still follow the traditional dehazing procedure: first estimate the medium transmission and the atmospheric light, then recover the haze-free image based on the atmospheric scattering model. However, in practice, due to lack of priors and constraints, it is hard to precisely estimate these intermediate parameters. Inaccurate estimation further degrades the performance of dehazing, resulting in artifacts, color distortion and insufficient haze removal. To address this, we propose a fully end-to-end Generative Adversarial Networks with Fusion-discriminator (FD-GAN) for image dehazing. With the proposed Fusion-discriminator which takes frequency information as additional priors, our model can generator more natural and realistic dehazed images with less color distortion and fewer artifacts. Moreover, we synthesize a large-scale training dataset including various indoor and outdoor hazy images to boost the performance and we reveal that for learning-based dehazing methods, the performance is strictly influenced by the training data. Experiments have shown that our method reaches state-of-the-art performance on both public synthetic datasets and real-world images with more visually pleasing dehazed results.


2019 ◽  
Vol 27 (1) ◽  
pp. 99-108 ◽  
Author(s):  
Ziqi Zhang ◽  
Chao Yan ◽  
Diego A Mesa ◽  
Jimeng Sun ◽  
Bradley A Malin

Abstract Objective Electronic medical records (EMRs) can support medical research and discovery, but privacy risks limit the sharing of such data on a wide scale. Various approaches have been developed to mitigate risk, including record simulation via generative adversarial networks (GANs). While showing promise in certain application domains, GANs lack a principled approach for EMR data that induces subpar simulation. In this article, we improve EMR simulation through a novel pipeline that (1) enhances the learning model, (2) incorporates evaluation criteria for data utility that informs learning, and (3) refines the training process. Materials and Methods We propose a new electronic health record generator using a GAN with a Wasserstein divergence and layer normalization techniques. We designed 2 utility measures to characterize similarity in the structural properties of real and simulated EMRs in the original and latent space, respectively. We applied a filtering strategy to enhance GAN training for low-prevalence clinical concepts. We evaluated the new and existing GANs with utility and privacy measures (membership and disclosure attacks) using billing codes from over 1 million EMRs at Vanderbilt University Medical Center. Results The proposed model outperformed the state-of-the-art approaches with significant improvement in retaining the nature of real records, including prediction performance and structural properties, without sacrificing privacy. Additionally, the filtering strategy achieved higher utility when the EMR training dataset was small. Conclusions These findings illustrate that EMR simulation through GANs can be substantially improved through more appropriate training, modeling, and evaluation criteria.


2021 ◽  
Author(s):  
Muhammad Haris Naveed ◽  
Umair Hashmi ◽  
Nayab Tajved ◽  
Neha Sultan ◽  
Ali Imran

This paper explores whether Generative Adversarial Networks (GANs) can produce realistic network load data that can be utilized to train machine learning models in lieu of real data. In this regard, we evaluate the performance of three recent GAN architectures on the Telecom Italia data set across a set of qualitative and quantitative metrics. Our results show that GAN generated synthetic data is indeed similar to real data and forecasting models trained on this data achieve similar performance to those trained on real data.


Author(s):  
Chaowei Xiao ◽  
Bo Li ◽  
Jun-yan Zhu ◽  
Warren He ◽  
Mingyan Liu ◽  
...  

Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial exam- ples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply Adv- GAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.


Author(s):  
Yao Ni ◽  
Dandan Song ◽  
Xi Zhang ◽  
Hao Wu ◽  
Lejian Liao

Generative adversarial networks (GANs) have shown impressive results, however, the generator and the discriminator are optimized in finite parameter space which means their performance still need to be improved. In this paper, we propose a novel approach of adversarial training between one generator and an exponential number of critics which are sampled from the original discriminative neural network via dropout. As discrepancy between outputs of different sub-networks of a same sample can measure the consistency of these critics, we encourage the critics to be consistent to real samples and inconsistent to generated samples during training, while the generator is trained to generate consistent samples for different critics. Experimental results demonstrate that our method can obtain state-of-the-art Inception scores of 9.17 and 10.02 on supervised CIFAR-10 and unsupervised STL-10 image generation tasks, respectively, as well as achieve competitive semi-supervised classification results on several benchmarks. Importantly, we demonstrate that our method can maintain stability in training and alleviate mode collapse.


Sign in / Sign up

Export Citation Format

Share Document