scholarly journals Recent Advances in the Pathophysiology of Fatty Acid Oxidation Defects: Secondary Alterations of Bioenergetics and Mitochondrial Calcium Homeostasis Caused by the Accumulating Fatty Acids

2020 ◽  
Vol 11 ◽  
Author(s):  
Alexandre Umpierrez Amaral ◽  
Moacir Wajner

Deficiencies of medium-chain acyl-CoA dehydrogenase, mitochondrial trifunctional protein, isolated long-chain 3-hydroxyacyl-CoA dehydrogenase, and very long-chain acyl-CoA dehydrogenase activities are considered the most frequent fatty acid oxidation defects (FAOD). They are biochemically characterized by the accumulation of medium-chain, long-chain hydroxyl, and long-chain fatty acids and derivatives, respectively, in tissues and biological fluids of the affected patients. Clinical manifestations commonly include hypoglycemia, cardiomyopathy, and recurrent rhabdomyolysis. Although the pathogenesis of these diseases is still poorly understood, energy deprivation secondary to blockage of fatty acid degradation seems to play an important role. However, recent evidence indicates that the predominant fatty acids accumulating in these disorders disrupt mitochondrial functions and are involved in their pathophysiology, possibly explaining the lactic acidosis, mitochondrial morphological alterations, and altered mitochondrial biochemical parameters found in tissues and cultured fibroblasts from some affected patients and also in animal models of these diseases. In this review, we will update the present knowledge on disturbances of mitochondrial bioenergetics, calcium homeostasis, uncoupling of oxidative phosphorylation, and mitochondrial permeability transition induction provoked by the major fatty acids accumulating in prevalent FAOD. It is emphasized that further in vivo studies carried out in tissues from affected patients and from animal genetic models of these disorders are necessary to confirm the present evidence mostly achieved from in vitro experiments.

PEDIATRICS ◽  
1991 ◽  
Vol 87 (3) ◽  
pp. 328-333 ◽  
Author(s):  
William R. Treem ◽  
Jeffrey S. Hyams ◽  
Charles A. Stanley ◽  
Daniel E. Hale ◽  
Harris B. Leopold

Inherited defects in fatty acid oxidation, which have been described and diagnosed with increasing frequency in the last decade, are most commonly attributed to a deficiency in the activity of medium-chain acyl-CoA dehydrogenase. Few cases of the related enzyme defect of long-chain acyl-CoA dehydrogenase activity have been reported. An infant with documented long-chain acyl-CoA dehydrogenase deficiency is described with a detailed metabolic profile, long-term clinical follow-up, and response to treatment. This patient is compared with the seven previously published cases of this disorder in order to stress the unique features of the initial presentation, more subtle late manifestations of the disease, and clinical and biochemical differentiation from the more common medium-chain acyl-CoA dehydrogenase deficiency. This report stresses the enlarging spectrum of the clinical presentation and natural history of this defect in fatty acid oxidation.


2021 ◽  
Vol 22 (19) ◽  
pp. 10556
Author(s):  
Khaled I. Alatibi ◽  
Stefan Tholen ◽  
Zeinab Wehbe ◽  
Judith Hagenbuchner ◽  
Daniela Karall ◽  
...  

Medium-chain fatty acids (mc-FAs) are currently applied in the treatment of long-chain fatty acid oxidation disorders (lc-FAOD) characterized by impaired β-oxidation. Here, we performed lipidomic and proteomic analysis in fibroblasts from patients with very long-chain acyl-CoA dehydrogenase (VLCADD) and long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHADD) deficiencies after incubation with heptanoate (C7) and octanoate (C8). Defects of β-oxidation induced striking proteomic alterations, whereas the effect of treatment with mc-FAs was minor. However, mc-FAs induced a remodeling of complex lipids. Especially C7 appeared to act protectively by restoring sphingolipid biosynthesis flux and improving the observed dysregulation of protein homeostasis in LCHADD under control conditions.


2014 ◽  
Vol 457 (3) ◽  
pp. 415-424 ◽  
Author(s):  
Marthe H. R. Ludtmann ◽  
Plamena R. Angelova ◽  
Ying Zhang ◽  
Andrey Y. Abramov ◽  
Albena T. Dinkova-Kostova

Transcription factor Nrf2 affects fatty acid oxidation; the mitochondrial oxidation of long-chain (palmitic) and short-chain (hexanoic) saturated fatty acids is depressed in the absence of Nrf2 and accelerated when Nrf2 is constitutively activated, affecting ATP production and FADH2 utilization.


2001 ◽  
Vol 45 (1) ◽  
pp. 30-37 ◽  
Author(s):  
B. Halvorsen ◽  
A.C. Rustan ◽  
L. Madsen ◽  
J. Reseland ◽  
R.K. Berge ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document