scholarly journals Construction of circRNA-Based ceRNA Network to Reveal the Role of circRNAs in the Progression and Prognosis of Hepatocellular Carcinoma

2021 ◽  
Vol 12 ◽  
Author(s):  
Rong Deng ◽  
Xiaohan Cui ◽  
Yuxiang Dong ◽  
Yanqiu Tang ◽  
Xuewen Tao ◽  
...  

BackgroundCircular RNAs (circRNAs) are now under hot discussion as novel promising biomarkers for patients with hepatocellular carcinoma (HCC). The purpose of our study is to identify several competing endogenous RNA (ceRNA) networks related to the prognosis and progression of HCC and to further investigate the mechanism of their influence on tumor progression.MethodsFirst, we obtained gene expression data related to liver cancer from The Cancer Genome Atlas (TCGA) database (http://www.portal.gdc.cancer.gov/), including microRNA (miRNA) sequence, RNA sequence, and clinical information. A co-expression network was constructed through the Weighted Correlation Network Analysis (WGCNA) software package in R software. The differentially expressed messenger RNAs (DEmRNAs) in the key module were analyzed with the Database for Annotation Visualization and Integrated Discovery (DAVID) (https://david.ncifcrf.gov/summary.jsp) to perform functional enrichment analysis including Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). The data of miRNA expression and clinical information downloaded from TCGA were utilized for survival analysis to detach the prognostic value of the DEmiRNAs of the key module.ResultsThe 201 differentially expressed miRNAs (DEmiRNAs) and 3,783 DEmRNAs were preliminarily identified through differential expression analysis. The co-expression networks of DEmiRNAs and DEmRNAs were constructed with WGCNA. Further analysis confirmed four miRNAs in the most significant module (blue module) were associated with the overall survival (OS) of patients with liver cancer, including hsa-miR-92b-3p, hsa-miR-122-3p, hsa-miR-139-5p, and hsa-miR-7850-5p. DAVID was used for functional enrichment analysis of 286 co-expressed mRNAs. The GO analysis results showed that the top enriched GO terms were oxidation–reduction process, extracellular exosome, and iron ion binding. In KEGG pathway analysis, the top three enriched terms included metabolic pathways, fatty acid degradation, and valine, leucine, and isoleucine degradation. In addition, we intersected the miRNA–mRNA interaction prediction results with the differentially expressed and prognostic mRNAs. We found that hsa-miR-92b-3p can be related to CPEB3 and ACADL. By overlapping the data of predicted circRNAs by circBank and differentially expressed circRNAs of GSE94508, we screened has_circ_0077210 as the upstream regulatory molecule of hsa-miR-92b-3p. Hsa_circ_0077210/hsa-miR-92b-3p/cytoplasmic polyadenylation element binding protein-3 (CPEB3) and acyl-Coenzyme A dehydrogenase, long chain (ACADL) were validated in HCC tissue.ConclusionOur research provides a mechanistic elucidation of the unknown ceRNA regulatory network in HCC. Hsa_circ_0077210 might serve a momentous therapeutic role to restrain the occurrence and development of HCC.

2020 ◽  
Author(s):  
Rong Deng ◽  
XiaoHan Cui ◽  
Yuxiang Dong ◽  
Yanqiu Tang ◽  
Xuewen Tao ◽  
...  

Abstract Background: Circular RNAs (circRNAs) are now under hot discussion as novel promising bio-markers for patients with hepatocellular carcinoma. The purpose of our study is to identify several competing endogenous RNAs (ceRNAs) networks related to the prognosis and progression of hepatocellular carcinoma, and to further investigate the mechanism of their influence on tumor progression.Methods: First, we obtained gene expression data related to liver cancer from the TCGA database (http://www.portal.gdc.cancer.gov/), including miRNA-seq, RNA-seq and clinical information. A co-expression network was constructed through the WGCNA software package in R software, with the purpose of identifying important microRNAs (miRNAs) and messenger RNAs (mRNAs) related to liver cancer. The DEmRNAs in the key module were analyzed with DAVID (https://david.ncifcrf.gov/summary.jsp) to perform functional enrichment analysis including Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO). The data of miRNA expression and clinical information downloaded from TCGA was utilized for survival analysis to detach the prognostic value of the DEmiRNAs of the key module. Results:201 DEmiRNAs and 3783 DEmRNAs were finally identified through differential expression analysis. The co-expression networks of DEmiRNA and DEmRNA were constructed by using WGCNA. Further analysis confirmed 4 miRNAs in the most significant module (blue module) were associated with the OS of patients with liver cancer, including hsa-miR-92b-3p, hsa-miR-122-3p, hsa-miR-139-5p and hsa-miR-7850-5p. DAVID was used for functional enrichment analysis of 286 co-expressed mRNAs. The Gene Ontology (GO) analysis results showed that the top enriched GO terms were oxidation-reduction process, extracellular exosome and iron ion binding. In Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, the top 3 enriched terms included metabolic pathways, fatty acid degradation and valine, leucine and isoleucine degradation. In addition, we corssed the miRNA-mRNA interactions prediction results with the differentially expressed and prognostic mRNAs, and found that hsa-miR-92b-3p can be related to cytoplasmic polyadenylation element binding protein 3 (CPEB3) and Acyl-CoA Dehydrogenase Long Chain (ACADL). By overlapping the data of predicted circRNAs by circBank and differentially expressed circRNAs of GSE94508, we screened has_circ_0077210 as the upstream regulatory molecule of hsa-miR-92b-3p. Hsa_circ_0077210/hsa-miR-92b-3p/CPEB3&ACADL were validated in hepatic cell carcinoma (HCC) tissues and human protein atlas (HPA) database.Conclusion: Our research provides a mechanistic elucidation of the unknown ceRNA regulatory network in HCC. Hsa_circ_0077210 might serve as an important biomarker to promote the occurrence and development of HCC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jingyuan Zhang ◽  
Xinkui Liu ◽  
Wei Zhou ◽  
Shan Lu ◽  
Chao Wu ◽  
...  

BackgroundHepatocellular carcinoma (HCC) has become the main cause of cancer death worldwide. More than half of hepatocellular carcinoma developed from hepatitis B virus infection (HBV). The purpose of this study is to find the key genes in the transformation process of liver inflammation and cancer and to inhibit the development of chronic inflammation and the transformation from disease to cancer.MethodsTwo groups of GEO data (including normal/HBV and HBV/HBV-HCC) were selected for differential expression analysis. The differential expression genes of HBV-HCC in TCGA were verified to coincide with the above genes to obtain overlapping genes. Then, functional enrichment analysis, modular analysis, and survival analysis were carried out on the key genes.ResultsWe identified nine central genes (CDK1, MAD2L1, CCNA2, PTTG1, NEK2) that may be closely related to the transformation of hepatitis B. The survival and prognosis gene markers composed of PTTG1, MAD2L1, RRM2, TPX2, CDK1, NEK2, DEPDC1, and ZWINT were constructed, which performed well in predicting the overall survival rate.ConclusionThe findings of this study have certain guiding significance for further research on the transformation of hepatitis B inflammatory cancer, inhibition of chronic inflammation, and molecular targeted therapy of cancer.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shanshan Liu ◽  
Guangchuang Yu ◽  
Li Liu ◽  
Xuejing Zou ◽  
Lang Zhou ◽  
...  

A growing amount of evidence has suggested the clinical importance of stromal and immune cells in the liver cancer microenvironment. However, reliable prognostic signatures based on assessments of stromal and immune components have not been well-established. This study aimed to identify stromal-immune score–based potential prognostic biomarkers for hepatocellular carcinoma. Stromal and immune scores were estimated from transcriptomic profiles of a liver cancer cohort from The Cancer Genome Atlas using the ESTIMATE (Estimation of STromal and Immune cells in MAlignant Tumors using Expression data) algorithm. Least absolute shrinkage and selection operator (LASSO) algorithm was applied to select prognostic genes. Favorable overall survivals and progression-free interval were found in patients with high stromal score and immune score, and 828 differentially expressed genes were identified. Functional enrichment analysis and protein–protein interaction networks further showed that these genes mainly participated in immune response, extracellular matrix, and cell adhesion. MMP9 (matrix metallopeptidase 9) was identified as a prognostic tumor microenvironment–associated gene by using LASSO and TIMER (Tumor IMmune Estimation Resource) algorithms and was found to be positively correlated with immunosuppressive molecules and drug response.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Peng Qin ◽  
Mengyu Zhang ◽  
Xue Liu ◽  
Ziming Dong

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death. HBV infection is an important risk factor for the tumorigenesis of HCC, given that the inflammatory environment is closely related to morbidity and prognosis. Consequently, it is of urgent importance to explore the immunogenomic landscape to supplement the prognosis of HCC. The expression profiles of immune‐related genes (IRGs) were integrated with 377 HCC patients to generate differentially expressed IRGs based on the Cancer Genome Atlas (TCGA) dataset. These IRGs were evaluated and assessed in terms of their diagnostic and prognostic values. A total of 32 differentially expressed immune‐related genes resulted as significantly correlated with the overall survival of HCC patients. The Gene Ontology functional enrichment analysis revealed that these genes were actively involved in cytokine‐cytokine receptor interaction. A prognostic signature based on IRGs (HSPA4, PSME3, PSMD14, FABP6, ISG20L2, TRAF3, NDRG1, NRAS, CSPG5, and IL17D) stratified patients into high-risk versus low-risk groups in terms of overall survival and remained as an independent prognostic factor in multivariate analyses after adjusting for clinical and pathologic factors. Several IRGs (HSPA4, PSME3, PSMD14, FABP6, ISG20L2, TRAF3, NDRG1, NRAS, CSPG5, and IL17D) of clinical significance were screened in the present study, revealing that the proposed clinical-immune signature is a promising risk score for predicting the prognosis of HCC.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e16683-e16683
Author(s):  
Yue Li ◽  
Ximing Xu

e16683 Background: Hepatocellular carcinoma is the most common malignant tumor. Although the treatment of HCC has significantly improved, the 5-year survival rate is still only 18%. There is increasing evidence that tumor immune microenvironment (TIM) plays critical roles during cancer initiation and progression. Based on the comprehensive exploration of the immunogenomic, an immune-related risk model was constructed to predict hepatocellular carcinoma prognosis. Methods: Transcriptomic data of HCC patients were downloaded from the TCGA database, and the differentially expressed immune-related genes (IRGs) (FDR < 0.01, |log2fold change| > 2) were identified. Functional enrichment analysis was performed to explore potential molecular mechanisms of the differentially expressed IRGs. By univariate and multivariate Cox regression analysis, we identified eight prognosis-related IRGs. Based on the expression levels of IRGs, we constructed the immune-related risk model. The Kaplan‐Meier (K‐M) survival curves, ROC curves, univariate and multivariate analysis were used to evaluate the immune-related risk model. According to the risk score, HCC patients were stratified into low and high-risk groups. CIBERSORT was applied to analyze the profiling difference of infiltrating immune cells between the two groups. Results: A total of 113 differentially expressed IRGs were identified, of which nine IRGs were correlated with the prognosis of HCC patients. Functional enrichment analysis showed that these genes were involved in immune response and immune signal pathway. The immune-related risk model consisted of eight IRGs (FABP6, RBP2, MAPT, BIRC5, PLXNA3, CSPG5, IL17D and STC2). The immune risk score was an independent prognostic factor (HR, 2.63 [1.93−3.58]; P = 8.16E−10) and the patients with a high-risk score tended to have a shorter OS than those with a low-risk score. In the TCGA cohort, high-risk patients tended to have an advanced stage. Moreover, we found that the patients in the high-risk group had higher fractions of T follicular cells helper and macrophages M0. The patients with low-risk scores had higher fractions of CD8+ T cells and CD4+ T cells. Conclusions: We have identified the immune-related risk model of hepatocellular carcinoma based on the expression profiles of eight immune-related genes. This model could predict prognosis and reflect the tumor immune microenvironment of HCC patients, which can provide new insights in the individualized treatment of HCC and potential novel targets for immunotherapy.


2021 ◽  
Author(s):  
Jiong Lu ◽  
Sishu Yang ◽  
xianze xiong

Abstract Background: The prognosis of hepatocellular carcinoma (HCC) is bleak though it has been improved over recent years. Early diagnosis could improve the survival. Plenty of researches indicate that long non-coding RNAs (lncRNAs) could play an important role in prognostic prediction of cancer as a kind of biomarker. Methods: We downloaded clinicopathological characteristics and lncRNA expression data of HCC patients from The Cancer Genome Atlas (TCGA) database. The ratio of training sets to validation sets was 2:1. Significant differentially expressed lncRNAs were identified by log-rank test and cox regression. All the significant lncRNAs were selected into the least absolute shrinkage and selection operator regression (LASSO) analysis and constructed risk-score formula by linear combination. Performance of the signatures were validated by receiver operating characteristics (ROC) curves and Kaplan-Meier survival curves. The correlated messenger RNAs (mRNA) were evaluated by functional enrichment analysis. Results: We identified and validated ten-lncRNAs based signatures to predict disease-free survival (DFS) and overall survival (OS) of HCC respectively. Stratified survival analysis showed that the performance of lncRNAs related signatures was better than tumor, node, metastasis(TNM) staging system. Functional enrichment analysis showed that organelle fission and regulation of mRNA metabolic process were significantly enriched in differentially expressed lncRNAs (DElncRNAs). Transcriptional misregulation in cancer and mitogen-activated protein kinase (MAPK) signaling pathway were significantly enriched pathways in the pathway enrichment analysis. Conclusion: we constructed two lncRNAs based signatures which could predict prognosis of HCC more accurate than the traditional ways.


2019 ◽  
Vol 14 (7) ◽  
pp. 591-601 ◽  
Author(s):  
Aravind K. Konda ◽  
Parasappa R. Sabale ◽  
Khela R. Soren ◽  
Shanmugavadivel P. Subramaniam ◽  
Pallavi Singh ◽  
...  

Background: Chickpea is a nutritional rich premier pulse crop but its production encounters setbacks due to various stresses and understanding of molecular mechanisms can be ascribed foremost importance. Objective: The investigation was carried out to identify the differentially expressed WRKY TFs in chickpea in response to herbicide stress and decipher their interacting partners. Methods: For this purpose, transcriptome wide identification of WRKY TFs in chickpea was done. Behavior of the differentially expressed TFs was compared between other stress conditions. Orthology based cofunctional gene networks were derived from Arabidopsis. Gene ontology and functional enrichment analysis was performed using Blast2GO and STRING software. Gene Coexpression Network (GCN) was constructed in chickpea using publicly available transcriptome data. Expression pattern of the identified gene network was studied in chickpea-Fusarium interactions. Results: A unique WRKY TF (Ca_08086) was found to be significantly (q value = 0.02) upregulated not only under herbicide stress but also in other stresses. Co-functional network of 14 genes, namely Ca_08086, Ca_19657, Ca_01317, Ca_20172, Ca_12226, Ca_15326, Ca_04218, Ca_07256, Ca_14620, Ca_12474, Ca_11595, Ca_15291, Ca_11762 and Ca_03543 were identified. GCN revealed 95 hub genes based on the significant probability scores. Functional annotation indicated role in callose deposition and response to chitin. Interestingly, contrasting expression pattern of the 14 network genes was observed in wilt resistant and susceptible chickpea genotypes, infected with Fusarium. Conclusion: This is the first report of identification of a multi-stress responsive WRKY TF and its associated GCN in chickpea.


2020 ◽  
Author(s):  
Gaochen Lan ◽  
Xiaoling Yu ◽  
Yanna Zhao ◽  
Jinjian Lan ◽  
Wan Li ◽  
...  

Abstract Background: Breast cancer is the most common malignant disease among women. At present, more and more attention has been paid to long non-coding RNAs (lncRNAs) in the field of breast cancer research. We aimed to investigate the expression profiles of lncRNAs and construct a prognostic lncRNA for predicting the overall survival (OS) of breast cancer.Methods: The expression profiles of lncRNAs and clinical data with breast cancer were obtained from The Cancer Genome Atlas (TCGA). Differentially expressed lncRNAs were screened out by R package (limma). The survival probability was estimated by the Kaplan‑Meier Test. The Cox Regression Model was performed for univariate and multivariate analysis. The risk score (RS) was established on the basis of the lncRNAs’ expression level (exp) multiplied regression coefficient (β) from the multivariate cox regression analysis with the following formula: RS=exp a1 * β a1 + exp a2 * β a2 +……+ exp an * β an. Functional enrichment analysis was performed by Metascape.Results: A total of 3404 differentially expressed lncRNAs were identified. Among them, CYTOR, MIR4458HG and MAPT-AS1 were significantly associated with the survival of breast cancer. Finally, The RS could predict OS of breast cancer (RS=exp CYTOR * β CYTOR + exp MIR4458HG * β MIR4458HG + exp MAPT-AS1 * β MAPT-AS1). Moreover, it was confirmed that the three-lncRNA signature could be an independent prognostic biomarker for breast cancer (HR=3.040, P=0.000).Conclusions: This study established a three-lncRNA signature, which might be a novel prognostic biomarker for breast cancer.


2021 ◽  
Author(s):  
Nana Yang ◽  
Qianghua Wang ◽  
Biao Ding ◽  
Yinging Gong ◽  
Yue Wu ◽  
...  

Abstract Background: The accumulation of ROS resulting from upregulated levels of oxidative stress is commonly implicated in preeclampsia (PE). Ferroptosis is a novel form of iron-dependent cell death instigated by lipid peroxidation likely plays important role in PE pathogenesis. This study aims to investigate expression profiles and functions of the ferroptosis-related genes (FRGs) in early- and late-onset preeclampsia.Methods: The gene expression data and clinical information were downloaded from GEO database. The “limma” R package was used for screening differentially expressed genes. GO(Gene Ontology), Kyoto Encyclopedia of Genes and Genomes(KEGG) and protein protein interaction (PPI) network analyses were conducted to investigate the bioinformatics functions and molecular interactions of significantly different FRGs. Quantitative real-time reverse transcriptase PCR was used to verify the expression of hub FRGs in PE.Results: A total number of 4,215 DEGs were identified between EOPE and preterm cases and 3,356 DEGs were found between EOPE and LOPE subtypes. 20 significantly different FRGs were identified in EOPE, while only 3 in LOPE. Functional enrichment analysis revealed that the differentially expressed FRGs was mainly involved in EOPE and enriched in hypoxia- and iron-related pathways, such as response to hypoxia, iron homeostasis and iron ion binding process. The PPI network analysis and verification by RT-qPCR resulted in the identification of the following six interesting FRGs: FTH1, HIF1A, FTL, IREB2, MAPK8 and PLIN2. Conclusions: EOPE and LOPE owned distinct underlying molecular mechanisms and ferroptosis may be mainly implicated in pathogenesis of EOPE. Further studies are necessary for deeper inquiry into placental ferroptosis and its role in the pathogenesis of EOPE.


2021 ◽  
Vol 41 (4) ◽  
Author(s):  
Dengliang Lei ◽  
Yue Chen ◽  
Yang Zhou ◽  
Gangli Hu ◽  
Fang Luo

Abstract Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal cancers worldwide. Neovascularization is closely related to the malignancy of tumors. We constructed a signature of angiogenesis-related long noncoding RNA (lncRNA) to predict the prognosis of patients with HCC. The lncRNA expression matrix of 424 HCC patients was downloaded from The Cancer Genome Atlas (TCGA). First, gene set enrichment analysis (GSEA) was used to distinguish the differentially expressed genes of the angiogenesis genes in liver cancer and adjacent tissues. Next, a signature of angiogenesis-related lncRNAs was constructed using univariate and multivariate analyses, and receiver operating characteristic (ROC) curves were used to assess the accuracy. The signature and relevant clinical information were used to construct the nomogram. A 5-lncRNA signature was highly correlated with overall survival (OS) in HCC patients and performed well in evaluations using the C-index, areas under the curve, and calibration curves. In summary, the 5-lncRNA model can serve as an accurate signature to predict the prognosis of patients with liver cancer, but its mechanism of action must be further elucidated by experiments.


Sign in / Sign up

Export Citation Format

Share Document