scholarly journals Genome-Wide Association Study Reveals PC4 as the Candidate Gene for Thermal Tolerance in Bay Scallop (Argopecten irradians irradians)

2021 ◽  
Vol 12 ◽  
Author(s):  
Xinghai Zhu ◽  
Pingping Liu ◽  
Xiujiang Hou ◽  
Junhao Zhang ◽  
Jia Lv ◽  
...  

The increasing sea temperature caused by global warming has resulted in severe mortalities in maricultural scallops. Therefore, improving thermal tolerance has become an active research area in the scallop farming industry. Bay scallop (Argopecten irradians irradians) was introduced into China in 1982 and has developed into a vast aquaculture industry in northern China. To date, genetic studies on thermal tolerance in bay scallops are limited, and no systematic screening of thermal tolerance-related loci or genes has been conducted in this species. In the present study, we conducted a genome-wide association study (GWAS) for thermal tolerance using the Arrhenius break temperature (ABT) indicators of 435 bay scallops and 38,011 single nucleotide polymorphism (SNP) markers. The GWAS identified 1,906 significant thermal tolerance-associated SNPs located in 16 chromosomes of bay scallop. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses showed that 638 genes were enriched in 42 GO terms, while 549 annotated genes were enriched in aggregation pathways. Additionally, the SNP (15-5091-20379557-1) with the lowest P value was located in the transcriptional coactivator p15 (PC4) gene, which is involved in regulating DNA damage repair and stabilizing genome functions. Further analysis in another population identified two new thermal tolerance-associated SNPs in the first coding sequence of PC4 in bay scallops (AiPC4). Moreover, AiPC4 expression levels were significantly correlated (r = 0.675–0.962; P < 0.05) with the ABT values of the examined bay scallops. Our data suggest that AiPC4 might be a positive regulator of thermal tolerance and a potential candidate gene for molecular breeding in bay scallop aiming at thermal tolerance improvement.

2021 ◽  
Vol 8 ◽  
Author(s):  
Xinghai Zhu ◽  
Junhao Zhang ◽  
Xiujiang Hou ◽  
Pingping Liu ◽  
Jia Lv ◽  
...  

Molluscan shell color has consistently drawn attention for its abundant diversity and commercial use in shellfish breeding projects. Recently, two new strains of bay scallop (Argopecten irradians irradians) with different shell colors as marked phenotypic traits have been artificially bred to improve their economic values; however, the inheritance mechanism of their shell pigmentation is still unclear. In this study, a genome-wide association study (GWAS) was conducted to determine the genetic basis of shell color in bay scallops utilizing 29,036 high-quality single-nucleotide polymorphisms (SNPs) derived from 80 purple-red (PP) and 80 black-brown (BP) shell color individuals. The result of the GWAS showed that 469 SNPs (p <1.72E−6) significantly associated with shell color were mainly distributed in chromosome 7. The top three SNPs (i.e., chr7-12764003, chr7-13213864, and chr7-11899306) are located in the genic region of G-protein-coupled receptor-like 101 (GRL101), polyketide synthase 1 (PKS1), and phosphoinositide phospholipase C (PLC1), which have been widely reported to be involved in pigmentation. Successfully, the top three SNPs were verified in another non-breeding bay scallop population. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses obtained 38 GO terms covering 297 genes and aggregating pathways involving 252 annotated genes. Specifically, the expression profiles of the top three identified candidate genes were detected in mantles of PP and BP individuals by real-time quantitative reverse transcription PCR. The significantly higher expression levels of GRL101 (6.43-fold) and PLC1 (6.48-fold) in PP, and PKS1 (12.02-fold) in BP implied that GRL101 and PLC1 potentially functioned in PP shell coloration, and black pigmentation in BP might be principally regulated by PKS1. Our data provide valuable information for deciphering the phenotype differences of shell color in the bay scallop.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yanwei Li ◽  
Ying Wang ◽  
Xinyi Wu ◽  
Jian Wang ◽  
Xiaohua Wu ◽  
...  

Fusarium wilt (FW) is a typical soil-borne disease that seriously affects the yield and fruit quality of bottle gourd. Thus, to improve resistance to FW in bottle gourd, the genetic mechanism underlying FW resistance needs to be explored. In this study, we performed a genome-wide association study (GWAS) based on 5,330 single-nucleotide polymorphisms (SNPs) and 89 bottle gourd accessions. The GWAS results revealed a total of 10 SNPs (P ≤ 0.01, −log10P ≥ 2.0) significantly associated with FW resistance that were detected in at least two environments (2019DI, 2020DI, and the average across the 2 years); these SNPs were located on chromosomes 1, 2, 3, 4, 8, and 9. Linkage disequilibrium (LD) block structure analysis predicted three potential candidate genes for FW resistance. Genes HG_GLEAN_10001030 and HG_GLEAN_10001042 were within the range of the mean LD block of the marker BGReSe_14202; gene HG_GLEAN_10011803 was 280 kb upstream of the marker BGReSe_00818. Real-time quantitative PCR (qRT-PCR) analysis showed that HG_GLEAN_10011803 was significantly up-regulated in FW-infected plants of YD-4, Yin-10, and Hanbi; HG_GLEAN_10001030 and HG_GLEAN_10001042 were specifically up-regulated in FW-infected plants of YD-4. Therefore, gene HG_GLEAN_10011803 is likely the major effect candidate gene for resistance against FW in bottle gourd. This work provides scientific evidence for the exploration of candidate gene and development of functional markers in FW-resistant bottle gourd breeding programs.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Leila Nayyeripasand ◽  
Ghasem Ali Garoosi ◽  
Asadollah Ahmadikhah

Abstract Background Rice is considered as a salt-sensitive plant, particularly at early vegetative stage, and its production is suffered from salinity due to expansion of salt affected land in areas under cultivation. Hence, significant increase of rice productivity on salinized lands is really necessary. Today genome-wide association study (GWAS) is a method of choice for fine mapping of QTLs involved in plant responses to abiotic stresses including salinity stress at early vegetative stage. In this study using > 33,000 SNP markers we identified rice genomic regions associated to early stage salinity tolerance. Eight salinity-related traits including shoot length (SL), root length (RL), root dry weight (RDW), root fresh weight (RFW), shoot fresh weight (SFW), shoot dry weight (SDW), relative water content (RWC) and TW, and 4 derived traits including SL-R, RL-R, RDW-R and RFW-R in a diverse panel of rice were evaluated under salinity (100 mM NaCl) and normal conditions in growth chamber. Genome-wide association study (GWAS) was applied based on MLM(+Q + K) model. Results Under stress conditions 151 trait-marker associations were identified that were scattered on 10 chromosomes of rice that arranged in 29 genomic regions. A genomic region on chromosome 1 (11.26 Mbp) was identified which co-located with a known QTL region SalTol1 for salinity tolerance at vegetative stage. A candidate gene (Os01g0304100) was identified in this region which encodes a cation chloride cotransporter. Furthermore, on this chromosome two other candidate genes, Os01g0624700 (24.95 Mbp) and Os01g0812000 (34.51 Mbp), were identified that encode a WRKY transcription factor (WRKY 12) and a transcriptional activator of gibberellin-dependent alpha-amylase expression (GAMyb), respectively. Also, a narrow interval on the same chromosome (40.79–42.98 Mbp) carries 12 candidate genes, some of them were not so far reported for salinity tolerance at seedling stage. Two of more interesting genes are Os01g0966000 and Os01g0963000, encoding a plasma membrane (PM) H+-ATPase and a peroxidase BP1 protein. A candidate gene was identified on chromosome 2 (Os02g0730300 at 30.4 Mbp) encoding a high affinity K+ transporter (HAK). On chromosome 6 a DnaJ-encoding gene and pseudouridine synthase gene were identified. Two novel genes on chromosome 8 including the ABI/VP1 transcription factor and retinoblastoma-related protein (RBR), and 3 novel genes on chromosome 11 including a Lox, F-box and Na+/H+ antiporter, were also identified. Conclusion Known or novel candidate genes in this research were identified that can be used for improvement of salinity tolerance in molecular breeding programmes of rice. Further study and identification of effective genes on salinity tolerance by the use of candidate gene-association analysis can help to precisely uncover the mechanisms of salinity tolerance at molecular level. A time dependent relationship between salt tolerance and expression level of candidate genes could be recognized.


2011 ◽  
Vol 12 (1) ◽  
Author(s):  
Ramani Anantharaman ◽  
Anand Kumar Andiappan ◽  
Pallavi Parate Nilkanth ◽  
Bani Kaur Suri ◽  
De Yun Wang ◽  
...  

2016 ◽  
Vol 149 (3) ◽  
pp. 156-164 ◽  
Author(s):  
Yadav Sapkota ◽  
Ashok Narasimhan ◽  
Mahalakshmi Kumaran ◽  
Badan S. Sehrawat ◽  
Sambasivarao Damaraju

Breast cancer (BC) predisposition in populations arises from both genetic and nongenetic risk factors. Structural variations such as copy number variations (CNVs) are heritable determinants for disease susceptibility. The primary objectives of this study are (1) to identify CNVs associated with sporadic BC using a genome-wide association study (GWAS) design; (2) to utilize 2 distinct CNV calling algorithms to identify concordant CNVs as a strategy to reduce false positive associations in the hypothesis-generating GWAS discovery phase, and (3) to identify potential candidate CNVs for follow-up replication studies. We used Affymetrix SNP Array 6.0 data profiled on Caucasian subjects (422 cases/348 controls) to call CNVs using algorithms implemented in Nexus Copy Number and Partek Genomics Suite software. Nexus algorithm identified CNVs associated with BC (731 autosomal CNVs with >5% frequency in the total sample and Q < 0.05). Thirteen CNVs were identified when Partek algorithm-called CNVs were overlapped with Nexus-identified CNVs; these CNVs showed concordances for frequency, effect size, and direction. Coding genes present within BC-associated CNVs were known to play a role in disease etiology and prognosis. Long noncoding RNAs identified within CNVs showed tissue-specific expression, indicating potential functional relevance of the findings. The identified candidate CNVs warrant independent replication.


Sign in / Sign up

Export Citation Format

Share Document