scholarly journals A Tiered Genetic Screening Strategy for the Molecular Diagnosis of Intellectual Disability in Chinese Patients

2021 ◽  
Vol 12 ◽  
Author(s):  
Limeng Dai ◽  
Danyan Zhang ◽  
Zhifeng Wu ◽  
Xingying Guan ◽  
Mingfu Ma ◽  
...  

Objective: Intellectual disability (ID) is one of the most common developmental disabilities. To identify the genetic etiology of IDs in Chongqing, we conducted a multistage study in Chinese Han patients.Methods: We collected the clinical and etiological data of 1665 ID patients, including 1,604 from the disabled children evaluation center and 61 from the pediatric rehabilitation unit. Routine genetic screening results were obtained, including karyotype and candidate gene analysis. Then 105 idiopathic cases with syndromic and severe ID/developmental delay (DD) were selected and tested by chromosomal microarray (CMA) and whole exome sequencing (WES) sequentially. The pathogenicity of the CNVs and SNVs were evaluated according to ACMG guidelines.Results: Molecular diagnosis was made by routine genetic screening in 216 patients, including 196 chromosomal syndromes. Among the 105 idiopathic patients, 49 patients with pathogenic/likely pathogenic CNVs and 21 patients with VUS were identified by CMA. Twenty-six pathogenic CNVs underlying well-known syndromic cases, such as Williams-Beuren syndrome, were confirmed by multiplex ligation-dependent probe amplification (MLPA). Nine novel mutations were identified by WES in thirty-fix CNV-negative ID cases.Conclusions: The study illustrated the genetic aberrations distribution of a large ID cohort in Chongqing. Compared with conventional or single methods, a tiered high-throughput diagnostic strategy was developed to greatly improve the diagnostic yields and extend the variation spectrum for idiopathic syndromic ID cases.

2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Zhu Zhang ◽  
Ting Hu ◽  
Jiamin Wang ◽  
Qinqin Li ◽  
He Wang ◽  
...  

Objective. To assess the clinical value of prenatal diagnosis using quantitative fluorescent polymerase chain reaction (QF-PCR) and chromosomal microarray analysis (CMA) for the examination of genomic imbalances in prenatal amniotic fluid samples from fetuses with a nuchal translucency (NT) greater than or equal to 2.5 mm. Materials and Methods. A total of 494 amniotic fluid samples and 5 chorionic villus samples were included in this study, with a fetal NT ≥ 2.5 mm at 11–13+6 weeks of gestation from November 2015 to December 2018. All cases were examined with QF-PCR, and those with normal QF-PCR results were then analyzed by CMA. Results. Of the 499 cases, common aneuploidies were detected by QF-PCR in 61 (12.2%) cases. One case of triploidy, one case of trisomy 21 mosaicism, and two cases of X/XX mosaicism were further confirmed by fluorescence in situ hybridization (FISH). Among the 434 cases with normal QF-PCR results, microarray detected additional pathogenic copy number variants (CNVs) in 4.8% (21/434) of cases. Six cases would have been expected to be detectable by conventional karyotyping because of large deletions/duplications (>10 Mb), leaving fifteen (3.5%, 15/428) cases with pathogenic CNVs only detectable by CMA. Pathogenic CNVs, especially those <10 Mb, were centralized in cases with an NT < 4.5 mm, including 5 pathogenic CNVs in cases with an NT of 2.5–3.5 mm and 7 pathogenic CNVs in cases with an NT of 3.5–4.5 mm. Conclusions. It is rational to use a diagnostic strategy in which CMA is preceded by a less-expensive, rapid method, namely, QF-PCR, to detect common aneuploidies. CMA allows for the detection of a number of pathogenic chromosomal aberrations in fetuses with an NT ≥ 2.5 mm.


2018 ◽  
Vol 08 (01) ◽  
pp. 001-009
Author(s):  
Pinar Arican ◽  
Berk Ozyilmaz ◽  
Dilek Cavusoglu ◽  
Pinar Gencpinar ◽  
Kadri Erdogan ◽  
...  

AbstractChromosomal microarray (CMA) analysis for discovery of copy number variants (CNVs) is now recommended as a first-line diagnostic tool in patients with unexplained developmental delay/intellectual disability (DD/ID) and autism spectrum disorders. In this study, we present the results of CMA analysis in patients with DD/ID. Of 210 patients, pathogenic CNVs were detected in 26 (12%) and variants of uncertain clinical significance in 36 (17%) children. The diagnosis of well-recognized genetic syndromes was achieved in 12 patients. CMA analysis revealed pathogenic de novo CNVs, such as 11p13 duplication with new clinical features. Our results support the utility of CMA as a routine diagnostic test for unexplained DD/ID.


2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Yi Liu ◽  
Yuqiang Lv ◽  
Mehdi Zarrei ◽  
Rui Dong ◽  
Xiaomeng Yang ◽  
...  

AbstractCopy number variants (CNVs) are recognized as a crucial genetic cause of neurodevelopmental disorders (NDDs). Chromosomal microarray analysis (CMA), the first-tier diagnostic test for individuals with NDDs, has been utilized to detect CNVs in clinical practice, but most reports are still from populations of European ancestry. To contribute more worldwide clinical genomics data, we investigated the genetic etiology of 410 Han Chinese patients with NDDs (151 with autism and 259 with unexplained intellectual disability (ID) and developmental delay (DD)) using CMA (Affymetrix) after G-banding karyotyping. Among all the NDD patients, 109 (26.6%) carried clinically relevant CNVs or uniparental disomies (UPDs), and 8 (2.0%) had aneuploidies (6 with trisomy 21 syndrome, 1 with 47,XXY, 1 with 47,XYY). In total, we found 129 clinically relevant CNVs and UPDs, including 32 CNVs in 30 ASD patients, and 92 CNVs and 5 UPDs in 79 ID/DD cases. When excluding the eight patients with aneuploidies, the diagnostic yield of pathogenic and likely pathogenic CNVs and UPDs was 20.9% for all NDDs (84/402), 3.3% in ASD (5/151), and 31.5% in ID/DD (79/251). When aneuploidies were included, the diagnostic yield increased to 22.4% for all NDDs (92/410), and 33.6% for ID/DD (87/259). We identified a de novo CNV in 14.9% (60/402) of subjects with NDDs. Interestingly, a higher diagnostic yield was observed in females (31.3%, 40/128) compared to males (16.1%, 44/274) for all NDDs (P = 4.8 × 10−4), suggesting that a female protective mechanism exists for deleterious CNVs and UPDs.


2014 ◽  
Vol 39 (1-2) ◽  
pp. 32-40 ◽  
Author(s):  
Zhihong Shi ◽  
Ying Wang ◽  
Shuai Liu ◽  
Mengyuan Liu ◽  
Shuling Liu ◽  
...  

Background: Alzheimer's disease (AD) and frontotemporal dementia (FTD) are two common forms of primary neurodegenerative dementia. Mutations in 3 genes (PSEN1, PSEN2, and APP) have been identified in patients with early-onset AD. Methods: We performed gene sequencing in PSEN1, PSEN2, and APP in 61 AD and 35 FTD Chinese patients. Amyloid load using 11C-labeled Pittsburgh compound B (11C-PIB) positron emission tomography (PET) and cerebral glucose metabolism using 18F-fludeoxyglucose PET were evaluated in patients carrying mutations. Results: We identified 1 known pathogenic PSEN1 (p.His163Arg, c.488A>G) mutation and 3 novel PSEN2 mutations in 6 patients. The novel mutation PSEN2 (p.His169Asn, c.505C>A) was identified in 1 patient with familial late-onset AD and in 1 sporadic FTD patient. The PSEN2 (p.Val214Leu, c.640G>T; p.Lys82Arg, c.245A>G) mutations were identified in 2 early-onset AD patients and 1 early-onset AD patient, respectively. Three patients with PSEN2 mutations were observed to have PIB retention on the cortex and striatum. One patient with the FTD phenotype was not observed to have PIB retention. Conclusion: PSEN2 mutations are common in the Chinese Han population with a history of AD and FTD. Pathogenic mutations or risk variants in the PSEN2 gene can influence both FTD and AD phenotypic traits and show variations in neuroimaging characterization. © 2014 S. Karger AG, Basel


Author(s):  
George Kirov ◽  
Michael C. O’Donovan ◽  
Michael J. Owen

Several submicroscopic genomic deletions and duplications known as copy number variants (CNVs) have been reported to increase susceptibility to schizophrenia. Those for which the evidence is particularly strong include deletions at chromosomal segments 1q21.1, 3q29, 15q11.2, 15q13.3, 17q12 and 22q11.2, duplications at 15q11.2-q13.1, 16p13.1, and 16p11.2, and deletions atthe gene NRXN1. The effect of each on individual risk is relatively large, but it does not appear that any of them is alone sufficient to cause disorder in carriers. These CNVs often arise as new mutations(de novo). Analyses of genes enriched among schizophrenia implicated CNVs highlight the involvement in the disorder of post-synaptic processes relevant to glutamatergicsignalling, cognition and learning. CNVs that contribute to schizophrenia risk also contribute to other neurodevelopmental disorders, including intellectual disability, developmental delay and autism. As a result of selection, all known pathogenic CNVs are rare, and none makes a sizeable contribution to overall population risk of schizophrenia, although the study of these mutations is nevertheless providing important insights into the origins of the disorder.


2018 ◽  
Vol 66 (5) ◽  
pp. 1370
Author(s):  
Inusha Panigrahi ◽  
Puneet Jain ◽  
Siyaram Didel ◽  
Sarita Agarwal ◽  
Srinivasan Muthuswamy ◽  
...  

2019 ◽  
Vol 157 (4) ◽  
pp. 220-226
Author(s):  
Yang Yu ◽  
Yuting Jiang ◽  
Xiaonan Hu ◽  
Hongguo Zhang ◽  
Ruizhi Liu ◽  
...  

Trisomy 18p is a rarely observed chromosomal aberration. Only 31 cases have previously been described in the literature. Trisomy 18p is associated with mild to moderate phenotypic anomalies and intellectual disability. Here, we report on a pregnant woman in whom noninvasive prenatal testing indicated a high risk of fetal trisomy 18. Prenatal diagnosis and karyotyping of the parents were performed and demonstrated that both the mother and the fetus had a derivative chromosome 15 with a segment of unknown origin. Chromosomal microarray analysis and FISH revealed a 14.9-Mb duplication of 18p and detected 3 centromeres of chromosome 18. To our knowledge, this is the first study reporting trisomy 18p due to an unbalanced translocation of 18p onto chromosome 15q showing 2-generation transmission. The results suggest that trisomy 18p can be considered a euchromatic variant.


2017 ◽  
Vol 06 (04) ◽  
pp. 227-233 ◽  
Author(s):  
Irina Novikova ◽  
Paushpala Sen ◽  
Ann Manzardo ◽  
Merlin Butler

AbstractWe present a clinical report of an 11-year-old male patient with an interstitial duplication of 19p13.3 (829 kb in size) at genomic coordinates 3,804,495–4,033,722 bp (hg19) identified by chromosomal microarray analysis and review the literature from nine published reports adding knowledge regarding this chromosomal anomaly and clinical outcomes. The size of the duplication ranged from 0.83 to 8.9 Mb in the nine individuals. The young boy in our report was dysmorphic with microcephaly, abnormal craniofacial features, intellectual disability, aggression, and a heart murmur. All patients were found to have a psychomotor developmental delay and/or intellectual disability with the majority having microcephaly, intrauterine growth retardation, and hypotonia. Common craniofacial findings included a tall, prominent forehead, an elongated face, epicanthal folds, hypertelorism, prominent low-set ears, philtrum anomaly, and a small mouth. Other less common features included abnormal digits, sparse hair, and cardiac defects. Clinical features, chromosome duplication sizes, locations, and the number of genes will be summarized in a tabular form.


2019 ◽  
Vol 32 (7) ◽  
pp. 667-674 ◽  
Author(s):  
Diana Micleaa ◽  
Camelia Al-Khzouza ◽  
Sergiu Osan ◽  
Simona Bucerzan ◽  
Victoria Cret ◽  
...  

Abstract Background Obesity with developmental disability/intellectual disability (DD/ID) is the most common association in syndromic obesity. Genomic analysis studies have allowed the decipherment of disease aetiology, both in cases of syndromic obesity as well as in cases of isolated or syndromic DD/ID. However, more data are needed to further elucidate the link between the two. The aim of this pangenomic study was to use single nucleotide polymorphism (SNP) array technology to determine the copy number variant (CNV) type and frequency associated with both obesity and DD/ID. Methods Thirty-six patients were recruited from the Clinical Emergency Hospital for Children, in Cluj-Napoca, Romania during the period 2015–2017. The main inclusion criterion was a diagnosis that included both obesity and DD/ID. Genomic analysis via SNP array technology was performed. Results Out of the 36 patients, 12 (33%) presented CNVs with a higher degree of pathogenicity (A group) and 24 (66%) presented benign CNVs (B group). The SNP array results for the A group were as follows: pathogenic CNVs in 8/12 patients (67%); variants of unknown significance (VOUS) in 2/12 patients (16%); and uniparental disomy (UPD) in 2/12 patients (16%). Conclusions Some of these CNVs have already been observed in patients with both obesity and DD/ID, but the others were noticed only in DD/ID patients and have not been described until now in association with obesity.


Sign in / Sign up

Export Citation Format

Share Document