scholarly journals Characterization of Loss-Of-Function KCNJ2 Mutations in Atypical Andersen Tawil Syndrome

2021 ◽  
Vol 12 ◽  
Author(s):  
Pauline Le Tanno ◽  
Mathilde Folacci ◽  
Jean Revilloud ◽  
Laurence Faivre ◽  
Gabriel Laurent ◽  
...  

Andersen-Tawil Syndrome (ATS) is a rare disease defined by the association of cardiac arrhythmias, periodic paralysis and dysmorphic features, and is caused by KCNJ2 loss-of-function mutations. However, when extracardiac symptoms are atypical or absent, the patient can be diagnosed with Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT), a rare arrhythmia at high risk of sudden death, mostly due to RYR2 mutations. The identification of KCNJ2 variants in CPVT suspicion is very rare but important because beta blockers, the cornerstone of CPVT therapy, could be less efficient. We report here the cases of two patients addressed for CPVT-like phenotypes. Genetic investigations led to the identification of p. Arg82Trp and p. Pro186Gln de novo variants in the KCNJ2 gene. Functional studies showed that both variants forms of Kir2.1 monomers act as dominant negative and drastically reduced the activity of the tetrameric channel. We characterize here a new pathogenic variant (p.Pro186Gln) of KCNJ2 gene and highlight the interest of accurate cardiologic evaluation and of attention to extracardiac signs to distinguish CPVT from atypical ATS, and guide therapeutic decisions. We also confirm that the KCNJ2 gene must be investigated during CPVT molecular analysis.

Author(s):  
Ana Santos-Gómez ◽  
Federico Miguez-Cabello ◽  
Adrián García-Recio ◽  
Sílvia Locubiche ◽  
Roberto García-Díaz ◽  
...  

Abstract De novo GRIN variants, encoding for the ionotropic glutamate NMDA receptor subunits, have been recently associated with GRIN-related disorders (GRDs), a group of rare paediatric encephalopathies. Current investigational and clinical efforts are focused to functionally stratify GRIN variants, towards precision therapies of this primary disturbance of glutamatergic transmission that affects neuronal function and brain. In the present study, we aimed to comprehensively delineate the functional outcomes and clinical phenotypes of GRIN protein truncating variants (PTVs) -accounting for ~ 20% of disease-associated GRIN variants- hypothetically provoking NMDAR hypofunctionality. To tackle this question, we created a comprehensive GRIN PTVs variants database compiling a cohort of 9 individuals harbouring GRIN PTVs, together with previously identified variants, to build-up an extensive GRIN PTVs repertoire composed of 293 unique variants. Genotype–phenotype correlation studies were conducted, followed by cell-based assays of selected paradigmatic GRIN PTVs, allowing their functional annotation. Genetic and clinical phenotypes metaanalysis revealed that heterozygous GRIN1, GRIN2C, GRIN2D, GRIN3A and GRIN3B PTVs are non-pathogenic. In contrast, heterozygous GRIN2A and GRIN2B PTVs are associated with specific neurological clinical phenotypes in a subunit- and domain-dependent manner. Mechanistically, cell-based assays showed that paradigmatic pathogenic GRIN2A and GRIN2B PTVs result on a decrease of NMDAR surface expression and NMDAR-mediated currents, ultimately leading to NMDAR functional haploinsufficiency.. Overall, these findings contribute to delineate GRIN PTVs genotype–phenotype association, and GRIN variants stratification. Functional studies showed that GRIN2A and GRIN2B pathogenic PTVs trigger NMDAR hypofunctionality, and thus accelerate therapeutic decisions for this neurodevelopmental condition.


2017 ◽  
Vol 173 (10) ◽  
pp. 2680-2689 ◽  
Author(s):  
Magalie S. Leduc ◽  
Hsiao-Tuan Chao ◽  
Chunjing Qu ◽  
Magdalena Walkiewicz ◽  
Rui Xiao ◽  
...  

2018 ◽  
Author(s):  
Virginie Courchet ◽  
Amanda J Roberts ◽  
Peggy Del Carmine ◽  
Tommy L. Lewis ◽  
Franck Polleux ◽  
...  

SUMMARYRecently, numerous rare de novo mutations have been identified in children diagnosed with autism spectrum disorders (ASD). However, despite the predicted loss-of-function nature of some of these de novo mutations, the affected individuals are heterozygous carriers, which would suggest that most of these candidate genes are haploinsufficient and/or that these mutations lead to expression of dominant-negative forms of the protein. Here, we tested this hypothesis with the gene Nuak1, recently identified as a candidate ASD gene and that we previously identified for its role in the development of cortical connectivity. We report that Nuak1 is happloinsufficient in mice in regard to its function in cortical axon branching in vitro and in vivo. Nuak1+/− mice show a combination of abnormal behavioral traits ranging from defective memory consolidation in a spatial learning task, defects in social novelty (but not social preference) and abnormal sensorimotor gating and prepulse inhibition of the startle response. Overall, our results demonstrate that Nuak1 haploinsufficiency leads to defects in the development of cortical connectivity and a complex array of behavorial deficits compatible with ASD, intellectual disability and schizophrenia.


Author(s):  
Kevin T Booth ◽  
Amama Ghaffar ◽  
Muhammad Rashid ◽  
Luke T Hovey ◽  
Mureed Hussain ◽  
...  

AbstractCOCH is the most abundantly expressed gene in the cochlea. Unsurprisingly, mutations in COCH underly deafness in mice and humans. Two forms of deafness are linked to mutations in COCH, the well-established autosomal dominant nonsyndromic hearing loss, with or without vestibular dysfunction (DFNA9) via a gain-of-function/dominant-negative mechanism, and more recently autosomal recessive nonsyndromic hearing loss (DFNB110) via nonsense variants. Using a combination of targeted gene panels, exome sequencing and functional studies, we identified four novel pathogenic variants (two nonsense variants, one missense and one inframe deletion) in COCH as the cause of autosomal recessive hearing loss in a multi-ethnic cohort. To investigate whether the non-truncating variants exert their effect via a loss-of-function mechanism, we used mini-gene splicing assays. Our data showed both the missense and inframe deletion variants altered RNA-splicing by creating an exon splicing silencer and abolishing an exon splicing enhancer, respectively. Both variants create frameshifts and are predicted to result in a null allele. This study confirms the involvement of loss-of-function mutations in COCH in autosomal recessive nonsyndromic hearing loss, expands the mutational landscape of DFNB110 to include coding variants that alter RNA-splicing, and highlights the need to investigate the effect of coding variants on RNA-splicing.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 57 ◽  
Author(s):  
Jonathan F Schmitz ◽  
Erich Bornberg-Bauer

Over the last few years, there has been an increasing amount of evidence for the de novo emergence of protein-coding genes, i.e. out of non-coding DNA. Here, we review the current literature and summarize the state of the field. We focus specifically on open questions and challenges in the study of de novo protein-coding genes such as the identification and verification of de novo-emerged genes. The greatest obstacle to date is the lack of high-quality genomic data with very short divergence times which could help precisely pin down the location of origin of a de novo gene. We conclude that, while there is plenty of evidence from a genetics perspective, there is a lack of functional studies of bona fide de novo genes and almost no knowledge about protein structures and how they come about during the emergence of de novo protein-coding genes. We suggest that future studies should concentrate on the functional and structural characterization of de novo protein-coding genes as well as the detailed study of the emergence of functional de novo protein-coding genes.


2017 ◽  
Vol 97 (2) ◽  
pp. 155-162 ◽  
Author(s):  
S.-W. Wong ◽  
D. Han ◽  
H. Zhang ◽  
Y. Liu ◽  
X. Zhang ◽  
...  

Tooth agenesis is one of the most common developmental anomalies affecting function and esthetics. The paired-domain transcription factor, Pax9, is critical for patterning and morphogenesis of tooth and taste buds. Mutations of PAX9 have been identified in patients with tooth agenesis. Despite significant progress in the genetics of tooth agenesis, many gaps in knowledge exist in refining the genotype-phenotype correlation between PAX9 and tooth agenesis. In the present study, we complete genetic and phenotypic characterization of multiplex Chinese families with nonsyndromic (NS) tooth agenesis. Direct sequencing of polymerase chain reaction products revealed 9 novel (c.140G>C, c.167T>A, c.332G>C, c.194C>A, c.271A>T, c.146delC, c.185_189dup, c.256_262dup, and c.592delG) and 2 known heterozygous mutations in the PAX9 gene among 120 probands. Subsequently, pedigrees were extended, and we confirmed that the mutations co-segregated with the tooth agenesis phenotype (with exception of families in which DNA analysis was not available). In 1 family ( n = 6), 2 individuals harbored both the PAX9 c.592delG mutation and a heterozygous missense mutation (c.739C>T) in the MSX1 gene. Clinical characterization of families segregating a PAX9 mutation reveal that all affected individuals were missing the mandibular second molar and their maxillary central incisors are most susceptible to microdontia. A significant reduction of bitter taste perception was documented in individuals harboring PAX9 mutations ( n = 3). Functional studies revealed that PAX9 haploinsufficiency or a loss of function of the PAX9 protein underlies tooth agenesis.


2017 ◽  
Vol 97 (1) ◽  
pp. 41-48 ◽  
Author(s):  
M.A. Eshete ◽  
H. Liu ◽  
M. Li ◽  
W.L. Adeyemo ◽  
L.J.J Gowans ◽  
...  

In contrast to the progress that has been made toward understanding the genetic etiology of cleft lip with or without cleft palate, relatively little is known about the genetic etiology for cleft palate only (CPO). A common coding variant of grainyhead like transcription factor 3 ( GRHL3) was recently shown to be associated with risk for CPO in Europeans. Mutations in this gene were also reported in families with Van der Woude syndrome. To identify rare mutations in GRHL3 that might explain the missing heritability for CPO, we sequenced GRHL3 in cases of CPO from Africa. We recruited participants from Ghana, Ethiopia, and Nigeria. This cohort included case-parent trios, cases and other family members, as well as controls. We sequenced exons of this gene in DNA from a total of 134 nonsyndromic cases. When possible, we sequenced them in parents to identify de novo mutations. Five novel mutations were identified: 2 missense (c.497C>A; p.Pro166His and c.1229A>G; p.Asp410Gly), 1 splice site (c.1282A>C p.Ser428Arg), 1 frameshift (c.470delC; p.Gly158Alafster55), and 1 nonsense (c.1677C>A; p.Tyr559Ter). These mutations were absent from 270 sequenced controls and from all public exome and whole genome databases, including the 1000 Genomes database (which includes data from Africa). However, 4 of the 5 mutations were present in unaffected mothers, indicating that their penetrance is incomplete. Interestingly, 1 mutation damaged a predicted sumoylation site, and another disrupted a predicted CK1 phosphorylation site. Overexpression assays in zebrafish and reporter assays in vitro indicated that 4 variants were functionally null or hypomorphic, while 1 was dominant negative. This study provides evidence that, as in Caucasian populations, mutations in GRHL3 contribute to the risk of nonsyndromic CPO in the African population.


2021 ◽  
Author(s):  
Xiaowei Zhong ◽  
Wenting Guo ◽  
Jinhong Wei ◽  
Yijun Tang ◽  
Yingjie Liu ◽  
...  

Mutations in cardiac ryanodine receptor (RyR2) are linked to catecholaminergic polymorphic ventricular tachycardia (CPVT). Most CPVT RyR2 mutations characterized are gain-of-function (GOF), indicating enhanced RyR2 function as a major cause of CPVT. Loss-of-function (LOF) RyR2 mutations have also been identified and are linked to a distinct entity of cardiac arrhythmia termed RyR2 Ca2+ release deficiency syndrome (CRDS). Exercise stress testing (EST) is routinely used to diagnose CPVT, but it is ineffective for CRDS. There is currently no effective diagnostic tool for CRDS in humans. An alternative strategy to assess the risk for CRDS is to directly determine the functional impact of the associated RyR2 mutations. To this end, we have functionally screened 18 RyR2 mutations that are associated with idiopathic ventricular fibrillation (IVF) or sudden death. We found two additional RyR2 LOF mutations E4146K and G4935R. The E4146K mutation markedly suppressed caffeine activation of RyR2 and abolished store overload induced Ca2+ release in HEK293 cells. E4146K also severely reduced cytosolic Ca2+ activation and abolished luminal Ca2+ activation of single RyR2 channels. The G4935R mutation completely abolished caffeine activation of and [3H]ryanodine binding to RyR2. Co-expression studies showed that the G4935R mutation exerted dominant negative impact on the RyR2 wildtype channel. Interestingly, the RyR2-G4935R mutant carrier had a negative EST, and the E4146K carrier had a family history of sudden death during sleep, which are different from phenotypes of typical CPVT. Thus, our data further support the link between RyR2 LOF and a new entity of cardiac arrhythmias distinct from CPVT.


2021 ◽  
Author(s):  
Johanna Krueger ◽  
Julian Schubert ◽  
Josua Kegele ◽  
Audrey Labalme ◽  
Miaomiao Mao ◽  
...  

Objective: De novo missense variants in KCNQ5, encoding the voltage–gated K+ channel KV7.5, have been described as a cause of developmental and epileptic encephalopathy (DEE) or intellectual disability (ID). We set out to identify disease–related KCNQ5 variants in genetic generalized epilepsy (GGE) and their underlying mechanisms. Methods: 1292 families with GGE were studied by next-generation sequencing. Whole–cell patch–clamp recordings, biotinylation and phospholipid overlay assays were performed in mammalian cells combined with docking and homology modeling. Results: We identified three deleterious heterozygous missense variants, one truncation and one splice site alteration in five independent families with GGE with predominant absence seizures, two variants were also associated with mild to moderate ID. All three missense variants displayed a strongly decreased current density indicating a loss–of–function (LOF). When mutant channels were co–expressed with wild–type (WT) KV7.5 or KV7.5 and KV7.3 channels, three variants also revealed a significant dominant–negative effect on WT channels. Other gating parameters were unchanged. Biotinylation assays indicated a normal surface expression of the variants. The p.Arg359Cys variant altered PI(4,5)P2–interaction, presumably in the non–conducting preopen–closed state. Interpretation: Our study indicates that specific deleterious KCNQ5 variants are associated with GGE, partially combined with mild to moderate ID. The disease mechanism is a LOF partially with dominant–negative effects through functional, rather than trafficking deficits. LOF of KV7.5 channels will reduce the M–current, likely resulting in increased excitability of KV7.5–expressing neurons. Further studies on a network level are necessary to understand which circuits are affected and how the variants induce generalized seizures.


Sign in / Sign up

Export Citation Format

Share Document