scholarly journals Haploinsufficiency of autism candidate gene NUAK1 impairs cortical development and behavior

2018 ◽  
Author(s):  
Virginie Courchet ◽  
Amanda J Roberts ◽  
Peggy Del Carmine ◽  
Tommy L. Lewis ◽  
Franck Polleux ◽  
...  

SUMMARYRecently, numerous rare de novo mutations have been identified in children diagnosed with autism spectrum disorders (ASD). However, despite the predicted loss-of-function nature of some of these de novo mutations, the affected individuals are heterozygous carriers, which would suggest that most of these candidate genes are haploinsufficient and/or that these mutations lead to expression of dominant-negative forms of the protein. Here, we tested this hypothesis with the gene Nuak1, recently identified as a candidate ASD gene and that we previously identified for its role in the development of cortical connectivity. We report that Nuak1 is happloinsufficient in mice in regard to its function in cortical axon branching in vitro and in vivo. Nuak1+/− mice show a combination of abnormal behavioral traits ranging from defective memory consolidation in a spatial learning task, defects in social novelty (but not social preference) and abnormal sensorimotor gating and prepulse inhibition of the startle response. Overall, our results demonstrate that Nuak1 haploinsufficiency leads to defects in the development of cortical connectivity and a complex array of behavorial deficits compatible with ASD, intellectual disability and schizophrenia.

2018 ◽  
Author(s):  
A. Ayanna Wade ◽  
Kenneth Lim ◽  
Rinaldo Catta-Preta ◽  
Alex S. Nord

ABSTRACTThe packaging of DNA into chromatin determines the transcriptional potential of cells and is central to eukaryotic gene regulation. Recent sequencing of patient mutations has linked de novo loss-of-function mutations to chromatin remodeling factors with specific, causal roles in neurodevelopmental disorders. Characterizing cellular and molecular phenotypes arising from haploinsufficiency of chromatin remodeling factors could reveal convergent mechanisms of pathology. Chromodomain helicase DNA binding protein 8 (CHD8) encodes a chromatin remodeling factor gene and has among the highest de novo loss-of-function mutations rates in patients with autism spectrum disorder (ASD). Mutations to CHD8 are expected to drive neurodevelopmental pathology through global disruptions to gene expression and chromatin state, however, mechanisms associated with CHD8 function have yet to be fully elucidated. We analyzed published transcriptomic and epigenomic data across CHD8 in vitro and in vivo knockdown and knockout models to identify convergent mechanisms of gene regulation by CHD8. We found reproducible high-affinity interactions of CHD8 near promoters of genes necessary for basic cell functions and gene regulation, especially chromatin organization and RNA processing genes. Overlap between CHD8 interaction and differential expression suggests that reduced dosage of CHD8 directly relates to decreased expression of these genes. In addition, genes important for neuronal development and function showed consistent dysregulation, though there was a reduced rate and decreased affinity for CHD8 interactions near these genes. This meta-analysis verifies CHD8 as a critical regulator of gene expression and reveals a consistent set of high affinity CHD8 interaction targets observed across human and mouse in vivo and in vitro studies. Our findings highlight novel core functions of CHD8 and indicate direct and downstream gene regulatory impacts that are likely to be associated with neuropathology underlying CHD8-associated neurodevelopmental disorder.


2010 ◽  
Vol 207 (11) ◽  
pp. 2331-2341 ◽  
Author(s):  
John R. Grainger ◽  
Katie A. Smith ◽  
James P. Hewitson ◽  
Henry J. McSorley ◽  
Yvonne Harcus ◽  
...  

Foxp3-expressing regulatory T (T reg) cells have been implicated in parasite-driven inhibition of host immunity during chronic infection. We addressed whether parasites can directly induce T reg cells. Foxp3 expression was stimulated in naive Foxp3− T cells in mice infected with the intestinal helminth Heligmosomoides polygyrus. In vitro, parasite-secreted proteins (termed H. polygyrus excretory-secretory antigen [HES]) induced de novo Foxp3 expression in fluorescence-sorted Foxp3− splenocytes from Foxp3–green fluorescent protein reporter mice. HES-induced T reg cells suppressed both in vitro effector cell proliferation and in vivo allergic airway inflammation. HES ligated the transforming growth factor (TGF) β receptor and promoted Smad2/3 phosphorylation. Foxp3 induction by HES was lost in dominant-negative TGF-βRII cells and was abolished by the TGF-β signaling inhibitor SB431542. This inhibitor also reduced worm burdens in H. polygyrus–infected mice. HES induced IL-17 in the presence of IL-6 but did not promote Th1 or Th2 development under any conditions. Importantly, antibody to mammalian TGF-β did not recognize HES, whereas antisera that inhibited HES did not affect TGF-β. Foxp3 was also induced by secreted products of Teladorsagia circumcincta, a related nematode which is widespread in ruminant animals. We have therefore identified a novel pathway through which helminth parasites may stimulate T reg cells, which is likely to be a key part of the parasite’s immunological relationship with the host.


2021 ◽  
Author(s):  
Laura M. Pillay ◽  
Joseph J. Yano ◽  
Andrew E. Davis ◽  
Matthew G. Butler ◽  
Keith A. Barnes ◽  
...  

Rationale: The small monomeric GTPase RHOA acts as a master regulator of signal transduction cascades by activating effectors of cellular signaling, including the Rho-associated protein kinases ROCK1/2. Previous in vitro cell culture studies suggest that RHOA can regulate many critical aspects of vascular endothelial cell (EC) biology, including focal adhesion, stress fiber formation, and angiogenesis. However, the specific in vivo roles of RHOA during vascular development and homeostasis are still not well understood. Objective: In this study we examine the in vivo functions of RHOA in regulating vascular development and integrity in zebrafish. Methods and Results: We use zebrafish RHOA-ortholog (rhoaa) mutants, transgenic embryos expressing wild type, dominant-negative, or constitutively active forms of rhoaa in ECs, and a pharmacologic inhibitor of ROCK1/2 to study the in vivo consequences of RHOA gain- and loss-of-function in the vascular endothelium. Our findings document roles for RHOA in vascular integrity, developmental angiogenesis, and vascular morphogenesis. Conclusions: Our results indicate that either too much or too little RHOA activity leads to vascular dysfunction in vivo.


2017 ◽  
Vol 97 (1) ◽  
pp. 41-48 ◽  
Author(s):  
M.A. Eshete ◽  
H. Liu ◽  
M. Li ◽  
W.L. Adeyemo ◽  
L.J.J Gowans ◽  
...  

In contrast to the progress that has been made toward understanding the genetic etiology of cleft lip with or without cleft palate, relatively little is known about the genetic etiology for cleft palate only (CPO). A common coding variant of grainyhead like transcription factor 3 ( GRHL3) was recently shown to be associated with risk for CPO in Europeans. Mutations in this gene were also reported in families with Van der Woude syndrome. To identify rare mutations in GRHL3 that might explain the missing heritability for CPO, we sequenced GRHL3 in cases of CPO from Africa. We recruited participants from Ghana, Ethiopia, and Nigeria. This cohort included case-parent trios, cases and other family members, as well as controls. We sequenced exons of this gene in DNA from a total of 134 nonsyndromic cases. When possible, we sequenced them in parents to identify de novo mutations. Five novel mutations were identified: 2 missense (c.497C>A; p.Pro166His and c.1229A>G; p.Asp410Gly), 1 splice site (c.1282A>C p.Ser428Arg), 1 frameshift (c.470delC; p.Gly158Alafster55), and 1 nonsense (c.1677C>A; p.Tyr559Ter). These mutations were absent from 270 sequenced controls and from all public exome and whole genome databases, including the 1000 Genomes database (which includes data from Africa). However, 4 of the 5 mutations were present in unaffected mothers, indicating that their penetrance is incomplete. Interestingly, 1 mutation damaged a predicted sumoylation site, and another disrupted a predicted CK1 phosphorylation site. Overexpression assays in zebrafish and reporter assays in vitro indicated that 4 variants were functionally null or hypomorphic, while 1 was dominant negative. This study provides evidence that, as in Caucasian populations, mutations in GRHL3 contribute to the risk of nonsyndromic CPO in the African population.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jasmin Morandell ◽  
Lena A. Schwarz ◽  
Bernadette Basilico ◽  
Saren Tasciyan ◽  
Georgi Dimchev ◽  
...  

AbstractDe novo loss of function mutations in the ubiquitin ligase-encoding gene Cullin3 (CUL3) lead to autism spectrum disorder (ASD). In mouse, constitutive Cul3 haploinsufficiency leads to motor coordination deficits as well as ASD-relevant social and cognitive impairments. However, induction of Cul3 haploinsufficiency later in life does not lead to ASD-relevant behaviors, pointing to an important role of Cul3 during a critical developmental window. Here we show that Cul3 is essential to regulate neuronal migration and, therefore, constitutive Cul3 heterozygous mutant mice display cortical lamination abnormalities. At the molecular level, we found that Cul3 controls neuronal migration by tightly regulating the amount of Plastin3 (Pls3), a previously unrecognized player of neural migration. Furthermore, we found that Pls3 cell-autonomously regulates cell migration by regulating actin cytoskeleton organization, and its levels are inversely proportional to neural migration speed. Finally, we provide evidence that cellular phenotypes associated with autism-linked gene haploinsufficiency can be rescued by transcriptional activation of the intact allele in vitro, offering a proof of concept for a potential therapeutic approach for ASDs.


2018 ◽  
Author(s):  
Da-li Tong ◽  
Rui-guo Chen ◽  
Yu-lan Lu ◽  
Wei-ke Li ◽  
Yue-fang Zhang ◽  
...  

AbstractAccumulated genetic evidences indicate that the contactin associated protein-like (CNTNAP) family is implicated in autism spectrum disorders (ASD). In this study, we identified genetic mutations in the CNTNAP3 gene from Chinese Han ASD cohorts and Simons Simplex Collections. We found that CNTNAP3 interacted with synaptic adhesion proteins Neuroligin1 and Neuroligin2, as well as scaffolding proteins PSD95 and Gephyrin. Significantly, we found that CNTNAP3 played an opposite role in controlling the development of excitatory and inhibitory synapses in vitro and in vivo, in which ASD mutants exhibited loss-of-function effects. In this study, we showed that Cntnap3-null mice exhibited deficits in social interaction, spatial learning and prominent repetitive behaviors. These evidences elucidate the pivotal role of CNTNAP3 in synapse development and social behaviors, providing the mechanistic insights for ASD.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1062-1062 ◽  
Author(s):  
Geoffrey M. Matthews ◽  
Sara Gandolfi ◽  
Johanna Bruggentheis ◽  
Ricardo De Matos Simoes ◽  
Dennis L Buckley ◽  
...  

Abstract Multiple myeloma (MM) remains an incurable malignancy with a clear need for novel therapeutic modalities. Moreover, acquired or de novo resistance to established or novel therapeutics remains a major challenge in this, and other, neoplasias. BET Bromodomain inhibitors (BBIs), including JQ1, have potent anti-MM activity in vitro and in in vivo, but do not provide curative outcome and do not induce apoptosis in many tumor cell types. Recently, a "next-generation" BBI, dBET, that causes degradation of BET Bromodomains (BRDs) through CRBN-mediated ubiquitination has been demonstrated to have potent activity in leukemia and myeloma. Here we sought to compare the mechanistic differences between BRD inhibition with BRD degradation in treatment-naive and drug-resistant MM. Additionally, we posited that resistance to dBET treatment could emerge through genetic perturbations and wished to uncover potential mechanisms prior to its clinical utilization. To address this, we compared effects of JQ1 with lead optimized compound dBET6, in a panel of human MM cell lines (± stromal cells), including clones resistant to JQ1, bortezomib and IMIDs, and assessed viability using CS-BLI/CTG assay. RNAseq and reverse phase protein arrays (RPPA) were employed to compare the transcriptional and translational effects of BRD degradation vs. inhibition. Using an open-ended unbiased genome-wide CRISPR (clustered regularly interspaced short palindromic repeats)-associated Cas9 approach, we examined whether we could uncover genes associated with resistance to dBET6. MM1.S cells were transduced with Cas9 and pooled lentiviral particles of the GeCKO library, consisting of 2 pooled sgRNA sub-libraries (~120,000 sgRNAs; targeting ~19,000 genes and ~1800 miRNAs). Using this CRISPR/Cas9-based approach we sought to expedite the isolation of MM cells resistant to dBET6. We treated the pool of cells thrice with dBET (250nM), allowing regrowth between treatments and maintaining a coverage of 1000 cells/sgRNA. dBET6-resistant cells were processed to quantify sgRNA enrichment or depletion, using deep sequencing. We observed dBET6 to have significantly greater potency against MM cells than JQ1, or its combination with lenalidomide, and that MM1S.CRBN-/- cells were resistant to dBET6. Resistance to neither JQ1 nor bortezomib conferred resistance to dBET6. We observed dBET6 to induce rapid and robust (<4hrs) degradation of BRD2, BRD3 and BRD4 and loss of c-MYC protein, compared with JQ1 which caused an apparent increase in BRD4 protein and significantly less c-MYC down-regulation. Interestingly, while dBET6 caused a time-dependent reduction in pro-survival Mcl-1 protein (among others) and increased cleavage of caspase-3/7, JQ1 caused Mcl-1 upregulation and did not induce cleavage of caspase-3/7. As predicted, our CRISPR/Cas9 screen identified significant enrichment of sgRNAs targeting CRBN, as well as several members of the Cullin-RING ligase (CRL) complex, known to play a critical role in E3 ubiquitin ligase activity. Preliminary experiments using individual sgRNAs appear to validate the role the CRL complex in dBET resistance. In summary, our data strongly support the development of dBET for the treatment of treatment-naive and drug-resistant MM. We demonstrate overlapping and distinct mechanisms of action between BRD inhibition vs. degradation and suggest that differential potencies of JQ1 vs. dBET is, at least in part, due to far greater loss of c-MYC and Mcl-1 expression, however further analysis is warranted. Additionally, our results demonstrate that loss of function of CRBN or the CRL complex induces dBET resistance by perturbing dBET-mediated BRD4 degradation. However, it is plausible that additional CRBN/CRL-independent mechanisms of dBET resistance exist that allow cells to survive despite complete degradation of BRDs and this will be a key question to be answered in future studies. Disclosures Bradner: Novartis Institutes for BioMedical Research: Employment.


2000 ◽  
Vol 20 (14) ◽  
pp. 5129-5139 ◽  
Author(s):  
Feng-Qian Li ◽  
Archie Coonrod ◽  
Marshall Horwitz

ABSTRACT Satellite myoblasts serve as stem cells in postnatal skeletal muscle, but the genes responsible for choosing between growth versus differentiation are largely undefined. We have used a novel genetic approach to identify genes encoding proteins whose dominant negative inhibition is capable of interrupting the in vitro differentiation of C2C12 murine satellite myoblasts. The screen is based on fusion of a library of cDNA fragments with the lysosomal protease cathepsin B (CB), such that the fusion protein intracellularly diverts interacting factors to the lysosome. Among other gene fragments selected in this screen, including those of known and novel sequence, is the retinoblastoma protein (RB) pocket domain. This unique dominant negative form of RB allows us to genetically determine if MyoD and RB associate in vivo. The dominant negative CB-RB fusion produces a cellular phenotype indistinguishable from recessive loss of function RB mutations. The fact that the dominant negative RB inhibits myogenic differentiation in the presence of nonlimiting concentrations of either RB or MyoD suggests that these two proteins do not directly interact. We further show that the dominant negative RB inhibits E2F1 but cannot inhibit a forced E2F1-RB dimer. Therefore, E2F1 is a potential mediator of the dominant negative inhibition of MyoD by CB-RB during satellite cell differentiation. We propose this approach to be generally suited to the investigation of gene function, even when little is known about the pathway being studied.


2015 ◽  
Vol 112 (37) ◽  
pp. E5189-E5198 ◽  
Author(s):  
Lisa A. Miosge ◽  
Matthew A. Field ◽  
Yovina Sontani ◽  
Vicky Cho ◽  
Simon Johnson ◽  
...  

Each person’s genome sequence has thousands of missense variants. Practical interpretation of their functional significance must rely on computational inferences in the absence of exhaustive experimental measurements. Here we analyzed the efficacy of these inferences in 33 de novo missense mutations revealed by sequencing in first-generation progeny of N-ethyl-N-nitrosourea–treated mice, involving 23 essential immune system genes. PolyPhen2, SIFT, MutationAssessor, Panther, CADD, and Condel were used to predict each mutation’s functional importance, whereas the actual effect was measured by breeding and testing homozygotes for the expected in vivo loss-of-function phenotype. Only 20% of mutations predicted to be deleterious by PolyPhen2 (and 15% by CADD) showed a discernible phenotype in individual homozygotes. Half of all possible missense mutations in the same 23 immune genes were predicted to be deleterious, and most of these appear to become subject to purifying selection because few persist between separate mouse substrains, rodents, or primates. Because defects in immune genes could be phenotypically masked in vivo by compensation and environment, we compared inferences by the same tools with the in vitro phenotype of all 2,314 possible missense variants in TP53; 42% of mutations predicted by PolyPhen2 to be deleterious (and 45% by CADD) had little measurable consequence for TP53-promoted transcription. We conclude that for de novo or low-frequency missense mutations found by genome sequencing, half those inferred as deleterious correspond to nearly neutral mutations that have little impact on the clinical phenotype of individual cases but will nevertheless become subject to purifying selection.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3812-3812
Author(s):  
David A. Russler-Germain ◽  
David H Spencer ◽  
Margaret A. Young ◽  
Tamara Lamprecht ◽  
Chris Miller ◽  
...  

Abstract Mutations in DNMT3A (encoding one of two mammalian de novo DNA methyltransferases) are found in >30% of normal karyotype AML cases and correlate with poor clinical outcomes. Most DNMT3A mutations occur at position R882 within the catalytic domain (most commonly R882H) and are virtually always heterozygous. This over-representation suggests that mutations at R882 may result in gain-of-function or dominant-negative activity that contributes to leukemogenesis. However, how DNA methylation might be altered in DNMT3A-mutant cases of AML remains unclear, and no published study to date has addressed the effects of mixing wild-type (WT) and R882H DNMT3A. Importantly, mouse HSPCs deficient in Dnmt3a dramatically expand over time and have a concurrent defect in differentiation (Challen, GA et al. Nat Genet, 2011). Mice haploinsufficient for Dnmt3a, on the other hand, do not have a measurable defect in hematopoiesis. Collectively, these data suggest that the heterozygous R882 mutations probably cause more than a simple loss-of-function phenotype. We purified full-length, human WT and R882H DNMT3A using a mammalian tissue culture system to produce recombinant proteins for biochemical modeling of the de novo methylation potential of a DNMT3A-mutant AML cell. rhR882H DNMT3A exhibits roughly 10-20% of the de novo DNA methyltransferase activity of rhWT DNMT3A, similar to observations by other groups. We added increasing amounts of R882H DNMT3A to a fixed amount of WT DNMT3A and observed a linear increase in the net enzymatic activity, reflecting the summed activity of the two forms of DNMT3A in these 4-hour in vitro reactions. In contrast, 12-hour in vitro DNA methylation assays with mixed WT and R882H DNMT3A demonstrated net methylation less than the predicted summed activity of the two enzymes, suggesting that a dominant-negative effect of R882H DNMT3A may occur with a long equilibration time. To better simulate an AML cell with a heterozygous R882H mutation, we co-transfected HEK293T cells with equal amounts of poly-His-tagged WT and R882H DNMT3A expression vectors. Subsequently co-purified (i.e. in vivo-mixed) WT and R882H DNMT3A exhibited a striking reduction in methyltransferase activity, with total activity similar to R882H DNMT3A alone (Figure 1A). TSQ mass spectrometry allowed us to verify the presence and quantify the relative concentration of WT and R882H DNMT3A in our co-purified samples. We exploited a novel tryptic cleavage site in DNMT3A produced by the R882H mutation to generate standard concentration curves using recombinant peptides distinguishing the two protein forms. Our co-purified enzyme preparations had WT:R882H ratios ranging from 0.79 to 1.60; all demonstrated the dominant-negative effect of R882H. DNMT3A is a processive enzyme, catalyzing multiple methyl-group transfers before dissociating from target DNA. This is dependent on the ability of WT DNMT3A to form homo-oligomers (tetramers and larger), which was recently shown to be disrupted by the R882H mutation using the catalytic domain of DNMT3A produced in E.coli (Holz-Schietinger, C et al. JBC, 2012). We therefore postulated that the dominant-negative effect of R882H may be due to the disruption of WT DNMT3A oligomerization. Using a Superose 6 size exclusion column, we confirmed the tetramerization defect of R882H DNMT3A relative to WT DNMT3A. Notably, in vivo-mixed (co-purified) WT and R882H DNMT3A complexes exhibited a pattern of oligomerization identical to R882H DNMT3A alone. However, WT and R882H DNMT3A mixed in vitro exhibited a distribution of oligomers corresponding to the expected average of the WT and R882H curves (Figure 1B). These data demonstrate that production of equal amounts of WT and R882H DNMT3A within the same cell provides an environment where R882H DNMT3A can exert a potent dominant-negative effect on WT DNMT3A. Furthermore, our data suggest that this effect is associated with diminished formation of tetramers when WT and R882H DNMT3A are complexed together. Thus, the R882H mutation has two distinct consequences that affect DNMT3A activity in AML cells: 1) it severely reduces its own de novo methyltransferase activity, and 2) it disrupts the ability of WT DNMT3A to form functional tetramers. These two effects severely reduce total DNMT3A activity in AML cells, and may explain why this mutation is virtually always heterozygous in AML samples, since homozygosity would not further reduce DNMT3A activity. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document