scholarly journals Editorial: Multi-Omics Study in Revealing Underlying Pathogenesis of Complex Diseases: A Translational Perspective

2021 ◽  
Vol 12 ◽  
Author(s):  
Yue-Miao Zhang ◽  
Yong-Fei Wang ◽  
Humaira Rasheed ◽  
Jurg Ott
2020 ◽  
Vol 21 (11) ◽  
pp. 1078-1084
Author(s):  
Ruizhi Fan ◽  
Chenhua Dong ◽  
Hu Song ◽  
Yixin Xu ◽  
Linsen Shi ◽  
...  

: Recently, an increasing number of biological and clinical reports have demonstrated that imbalance of microbial community has the ability to play important roles among several complex diseases concerning human health. Having a good knowledge of discovering potential of microbe-disease relationships, which provides the ability to having a better understanding of some issues, including disease pathology, further boosts disease diagnostics and prognostics, has been taken into account. Nevertheless, a few computational approaches can meet the need of huge scale of microbe-disease association discovery. In this work, we proposed the EHAI model, which is Enhanced Human microbe- disease Association Identification. EHAI employed the microbe-disease associations, and then Gaussian interaction profile kernel similarity has been utilized to enhance the basic microbe-disease association. Actually, some known microbe-disease associations and a large amount of associations are still unavailable among the datasets. The ‘super-microbe’ and ‘super-disease’ were employed to enhance the model. Computational results demonstrated that such super-classes have the ability to be helpful to the performance of EHAI. Therefore, it is anticipated that EHAI can be treated as an important biological tool in this field.


Epigenomes ◽  
2020 ◽  
Vol 4 (3) ◽  
pp. 18
Author(s):  
Murat Toruner ◽  
Martin E. Fernandez-Zapico ◽  
Christopher L. Pin

Pancreatic cancer remains among the deadliest forms of cancer with a 5 year survival rate less than 10%. With increasing numbers being observed, there is an urgent need to elucidate the pathogenesis of pancreatic cancer. While both contribute to disease progression, neither genetic nor environmental factors completely explain susceptibility or pathogenesis. Defining the links between genetic and environmental events represents an opportunity to understand the pathogenesis of pancreatic cancer. Epigenetics, the study of mitotically heritable changes in genome function without a change in nucleotide sequence, is an emerging field of research in pancreatic cancer. The main epigenetic mechanisms include DNA methylation, histone modifications and RNA interference, all of which are altered by changes to the environment. Epigenetic mechanisms are being investigated to clarify the underlying pathogenesis of pancreatic cancer including an increasing number of studies examining the role as possible diagnostic and prognostic biomarkers. These mechanisms also provide targets for promising new therapeutic approaches for this devastating malignancy.


2013 ◽  
Vol 11 (3) ◽  
pp. 128-128
Author(s):  
C. C. Johnson ◽  
C. Chao ◽  
L. Engel ◽  
H. Feigelson ◽  
J. Fortuny ◽  
...  

2021 ◽  
Vol 49 (2) ◽  
pp. 030006052098266
Author(s):  
Xinmei Dang ◽  
Di Zhou ◽  
Lingjun Meng ◽  
Lintao Bi

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare, aggressive hematodermic malignancy derived from plasmacytoid dendritic cell precursors. Despite advances in our understanding of tumor cell surface markers, the pathogenesis of BPDCN remains largely unknown. No standard or optimal treatments are available for BPDCN, and the prognosis is usually poor. We report herein a case of BPDCN that harbored multiple genetic mutations in epigenetic modifiers such as TET2 and ZRSR2. Genetic studies in patients with BPDCN may provide insights into the underlying pathogenesis, prediction of clinical prognosis, and development of better targeted therapeutics for this rare clinical entity.


2021 ◽  
Vol 22 (11) ◽  
pp. 6138
Author(s):  
Serena Asslih ◽  
Odeya Damri ◽  
Galila Agam

The term neuroinflammation refers to inflammation of the nervous tissue, in general, and in the central nervous system (CNS), in particular. It is a driver of neurotoxicity, it is detrimental, and implies that glial cell activation happens prior to neuronal degeneration and, possibly, even causes it. The inflammation-like glial responses may be initiated in response to a variety of cues such as infection, traumatic brain injury, toxic metabolites, or autoimmunity. The inflammatory response of activated microglia engages the immune system and initiates tissue repair. Through translational research the role played by neuroinflammation has been acknowledged in different disease entities. Intriguingly, these entities include both those directly related to the CNS (commonly designated neuropsychiatric disorders) and those not directly related to the CNS (e.g., cancer and diabetes type 2). Interestingly, all the above-mentioned entities belong to the same group of “complex disorders”. This review aims to summarize cumulated data supporting the hypothesis that neuroinflammation is a common denominator of a wide variety of complex diseases. We will concentrate on cancer, type 2 diabetes (T2DM), and neuropsychiatric disorders (focusing on mood disorders).


Sign in / Sign up

Export Citation Format

Share Document