scholarly journals The IgA Isotype of Anti-β2 Glycoprotein I Antibodies Recognizes Epitopes in Domains 3, 4, and 5 That Are Located in a Lateral Zone of the Molecule (L-Shaped)

2019 ◽  
Vol 10 ◽  
Author(s):  
Manuel Serrano ◽  
Jose Angel Martinez-Flores ◽  
Gary L. Norman ◽  
Laura Naranjo ◽  
Jose Maria Morales ◽  
...  
Keyword(s):  
2001 ◽  
Vol 86 (11) ◽  
pp. 1257-1263 ◽  
Author(s):  
Attilio Bondanza ◽  
Angelo Manfredi ◽  
Valérie Zimmermann ◽  
Matteo Iannacone ◽  
Angela Tincani ◽  
...  

SummaryScavenger phagocytes are mostly responsible for the in vivo clearance of activated or senescent platelets. In contrast to other particulate substrates, the phagocytosis of platelets does not incite pro-inflammatory responses in vivo. This study assessed the contribution of macrophages and dendritic cells (DCs) to the clearance of activated platelets. Furthermore, we verified whether antibodies against the β2 Glycoprotein I (β2GPI), which bind to activated platelets, influence the phenomenon. DCs did not per se internalise activated platelets. In contrast, macrophages efficiently phagocytosed platelets. In agreement with the uneventful nature of the clearance of platelets in vivo, phagocytosing macrophages did not release IL-1β, TNF-α or IL-10. β2GPI bound to activated platelets and was required for their recognition by anti-ββ2GPI antibodies. DCs internalised platelets opsonised by anti-ββ2GPI antibodies. The phagocytosis of opsonised platelets determined the release of TNF-α and IL-1β by DCs and macrophages. Phagocytosing macrophages, but not DCs, secreted the antiinflammatory cytokine IL-1β0. We conclude that anti-ββ2GPI antibodies cause inflammation during platelet clearance and shuttle platelet antigens to antigen presenting DCs.


1998 ◽  
Vol 80 (09) ◽  
pp. 393-398 ◽  
Author(s):  
V. Regnault ◽  
E. Hachulla ◽  
L. Darnige ◽  
B. Roussel ◽  
J. C. Bensa ◽  
...  

SummaryMost anticardiolipin antibodies (ACA) associated with antiphospholipid syndrome (APS) are directed against epitopes expressed on β2-glycoprotein I (β2GPI). Despite a good correlation between standard ACA assays and those using purified human β2GPI as the sole antigen, some sera from APS patients only react in the latter. This is indicative of heterogeneity in anti-β2GPI antibodies. To characterize their reactivity profiles, human and bovine β2GPI were immobilized on γ-irradiated plates (β2GPI-ELISA), plain polystyrene precoated with increasing cardiolipin concentrations (CL/β2GPI-ELISA), and affinity columns. Fluid-phase inhibition experiments were also carried out with both proteins. Of 56 selected sera, restricted recognition of bovine or human β2GPI occurred respectively in 10/29 IgA-positive and 9/22 IgM-positive samples, and most of the latter (8/9) were missed by the standard ACA assay, as expected from a previous study. Based on species specificity and ACA results, IgG-positive samples (53/56) were categorized into three groups: antibodies reactive to bovine β2GPI only (group I) or to bovine and human β2GPI, group II being ACA-negative, and group III being ACA-positive. The most important group, group III (n = 33) was characterized by (i) binding when β2GPI was immobilized on γ-irradiated polystyrene or cardiolipin at sufficient concentration (regardless of β2GPI density, as assessed using 125I-β2GPI); (ii) and low avidity binding to fluid-phase β2GPI (Kd in the range 10–5 M). In contrast, all six group II samples showed (i) ability to bind human and bovine β2GPI immobilized on non-irradiated plates; (ii) concentration-dependent blockade of binding by cardiolipin, suggesting epitope location in the vicinity of the phospholipid binding site on native β2GPI; (iii) and relative avidities approximately 100-fold higher than in group III. Group I patients were heterogeneous with respect to CL/β2GPI-ELISA and ACA results (6/14 scored negative), possibly reflecting antibody differences in terms of avidity and epitope specificity. Affinity fractionation of 23 sera showed the existence, in individual patients, of various combinations of antibody subsets solely reactive to human or bovine β2GPI, together with cross-species reactive subsets present in all samples with dual reactivity namely groups III and II, although the latter antibodies were poorly purified on either column. Therefore, the mode of presentation of β2GPI greatly influences its recognition by anti-β2GPI antibodies with marked inter-individual heterogeneity, in relation to ACA quantitation and, possibly, disease presentation and pathogenesis.


1992 ◽  
Vol 68 (05) ◽  
pp. 624-624 ◽  
Author(s):  
E De Benedetti ◽  
G Reber ◽  
P A Miescher ◽  
P de Moerloose

1994 ◽  
Vol 72 (04) ◽  
pp. 578-581 ◽  
Author(s):  
T McNally ◽  
S E Cotterell ◽  
I J Mackie ◽  
D A Isenberg ◽  
S J Machin

Summaryβ2 glycoprotein-I (β2GPI), a cofactor for antiphospholipid antibody (aPA) binding, binds to many anionic macromolecules including heparin. The nature of this interaction with heparin is not well understood and its effect on the purported biological functions of β2GPI is unknown.We have examined the interactions of dermatan sulphate (DS) and different pharmaceutical preparations of heparin with β2GPI by crossed immunoelectrophoresis (CIE) and investigated the effect of these agents on plasma levels of p2GPI antigen (β2GPI: Ag) by a standardised enzyme linked immunosorbent assay (ELISA). P2GPI aPA cofactor activity (β2GPI:Cof) was also measured using a modified solid phase an-ti-phosphatidylserine (aPS) ELISA. CIE results confirmed a heparin-β2GPI interaction with unfractionated (UF) heparin. β2GPI:Ag levels were unaffected by any of the preparations investigated. There were no significant differences in β2GPI:Cof activities of the samples containing LMW heparins or DS but levels of β2GPI:Cof were increased in samples containing UF sodium and calcium heparin preparations (0.5 IU/ml Monoparin, p <0.05, and 10 IU/ml Liquemin and Calcipa-rine, p <0.05).


1992 ◽  
Vol 67 (03) ◽  
pp. 386-386 ◽  
Author(s):  
M Galli ◽  
S Cortelazzo ◽  
M Daldossi ◽  
T Barbui

1995 ◽  
Vol 73 (05) ◽  
pp. 798-804 ◽  
Author(s):  
Inger Schousboe ◽  
Margit Søe Rasmussen

SummaryLupus anticoagulants are a group of antibodies commonly found in patients with autoimmune diseases such as systemic lupus erythematosus. Lupus anticoagulants inhibit phospholipid dependent coagulation and may bind to negatively charged phospholipids. Recent studies have suggested an association between anti-β2-glycoprotein I and a lupus anticoagulant, whose activity is frequently dependent on the presence of β2-glycoprotein I. Based on these observations, the effect of anti-β2-glycoprotein I on the autoactivation of factor XII in plasma was investigated. Autoactivation initiated by the presence of negatively charged phospholipids, but not by sulfatide, was strongly inhibited by immunoaffinity purified anti-β2-glycoprotein I. The dose-response curve of anti-β2-gly coprotein I was identical with that of a precipitating antibody, showing no inhibition at low and high antibody dilutions and maximal inhibition at an intermediate dilution. At high antibody concentrations, an increased rate of factor Xlla activation was observed. This increase was of the same magnitude as the decreased rate observed in plasma supplemented with the same amount of β2-glycoprotein I as in the plasma itself. This confirms the inhibitory effect of β2-GP-I on the contact activation and shows that inhibition is effective on the autoactivation of factor XII in plasma. The inhibitory action of β2-glycoprotein I was independent of the inhibition caused by the anti- β2-glycoprotein I/β2-glycoprotein I complex suggesting a synchronized inhibition of factor XII autoactivation by β2-glycoprotein I and anti-β2-gly coprotein I. The inhibition caused by the antibody is suggested to be caused by a reduced availability of negatively charged phospholipids due to the binding of the anti-β2- GP-I/β2-GP-I complex. This complex may be a lupus anticoagulant.


1997 ◽  
Vol 77 (05) ◽  
pp. 0856-0861 ◽  
Author(s):  
N Abuaf ◽  
S Laperche ◽  
B Rajoely ◽  
R Carsique ◽  
A Deschamps ◽  
...  

SummaryIn HIV-1 infection, an increased prevalence of anticardiolipin autoantibodies (aCL) and lupus anticoagulant (LA) has been described. In order to see if these antibodies are isolated or, like in autoimmune diseases, associated with hematological disorders and with antibodies to other phospholipids and to proteins of coagulation, we investigated 3 groups of patients: 1. 342 HIV-1 infected patients, 2. 145 control patients including 61 systemic lupus erythematosus (SLE) patients, 58 patients with a connective tissue disease, 15 patients with stroke, 11 patients with syphilis and 3.100 blood donors. In HIV-1 infection antiprothrombin (aPrT) antibodies were present in 25% of patients, the prevalence of antiphosphatidylcholine antibodies (aPC) (50%) was almost as high as aCL (64%), and 39% had both antibodies. Absorption on liposomes of the latter revealed an heterogeneous mixture of aCL and aPC or cross-reacting antibodies. In contrast with SLE, anti-β2-glycoprotein I (4%), LA (1%), biological false positive test for syphilis (0.3%), thrombosis (p <0.001) were uncommon. In HIV-1 infection, antiphospholipid antibodies do not associate with features linked to them in SLE or syphilis.


1997 ◽  
Vol 77 (05) ◽  
pp. 1037-1038 ◽  
Author(s):  
Viviane Guérin ◽  
Anne Couchouron ◽  
Christine Vergnes ◽  
Eric Parrens ◽  
Jean Philippe Vernhes ◽  
...  

1992 ◽  
Vol 68 (03) ◽  
pp. 297-300 ◽  
Author(s):  
Monica Galli ◽  
Paul Comfurius ◽  
Tiziano Barbui ◽  
Robert F A Zwaal ◽  
Edouard M Bevers

SummaryPlasmas of 16 patients positive for both IgG anticardiolipin (aCL) antibodies and lupus anticoagulant (LA) antibodies were subjected to adsorption with liposomes containing cardiolipin. In 5 of these plasmas both the anticardiolipin and the anticoagulant activities were co-sedimented with the liposomes in a dose-dependent manner, whereas in the remaining cases only the anticardiolipin activity could be removed by the liposomes, leaving the anticoagulant activity (LA) in the supernatant plasma. aCL antibodies purified from the first 5 plasmas were defined as aCL-type A, while the term aCL-type B was used for antibodies in the other 11 plasmas, from which 2 were selected for this study.Prolongation of the dRVVT was produced by affinity-purified aCL-type A antibodies in plasma of human as well as animal (bovine, rat and goat) origin. aCL-type B antibodies were found to be devoid of anticoagulant activity, while the corresponding supernatants containing LA IgG produced prolongation of the dRVVT only in human plasma.These anticoagulant activities of aCL-type A and of LA IgG's were subsequently evaluated in human plasma depleted of β2-glycoprotein I (β2-GPI), a protein which was previously shown to be essential in the binding of aCL antibodies to anionic phospholipids. Prolongation of the dRVVT by aCL-type A antibodies was abolished using β2-GPI deficient plasma, but could be restored upon addition of β2-GPI. In contrast, LA IgG caused prolongation of the dRVVT irrespective of the presence or absence of β2-GPI.Since β2-GPI binds to negatively-charged phospholipids and impedes the conversion of prothrombin by the factor Xa/Va enzyme complex (Nimpf et al., Biochim Biophys Acta 1986; 884: 142–9), comparison was made of the effect of aCL-type A and aCL-type B antibodies on the rate of thrombin formation in the presence and absence of β2-GPI. This was measured in a system containing highly purified coagulation factors Xa, Va and prothrombin and lipid vesicles composed of 20 mole% phosphatidylserine and 80 mole% phosphatidylcholine. No inhibition on the rate of thrombin formation was observed with both types of aCL antibodies when either β2-GPI or the lipid vesicles were omitted. Addition of β2-GPI to the prothrombinase assay in the presence of lipid vesicles causes a time-dependent inhibition which was not affected by the presence of aCL-type B or non-specific IgG. In contrast, the presence of aCL-type A antibodies dramatically increased the anticoagulant effect of β2-GPI. These data indicate that the anticoagulant activity of aCL-type A antibodies in plasma is mediated by β2-GPI.


Sign in / Sign up

Export Citation Format

Share Document