scholarly journals Short-Chain Fatty Acids: A Soldier Fighting Against Inflammation and Protecting From Tumorigenesis in People With Diabetes

2020 ◽  
Vol 11 ◽  
Author(s):  
Qiyu Yang ◽  
Jing Ouyang ◽  
Fengjun Sun ◽  
Jiadan Yang

Converging evidences showed that people with diabetes mellitus (DM) have significantly higher risk for different cancers, of which the exact mechanism underlying the association has not been fully realized. Short-chain fatty acids (SCFAs), the fermentation products of the intestinal microbiota, are an essential source for energy supply in gut epithelial cells. They have been reported to improve intestinal barrier integrity, prevent microbial translocation, and further dampen inflammation. Gut dysbiosis and reduction in SCFA-producing bacteria as well as SCFAs production in the intestine are commonly seen in metabolic disorders including DM and obesity. Moreover, inflammation can contribute to tumor initiation and progression through multiple pathways, such as enhancing DNA damage, accumulating mutations in tumor suppressor genes Tp53, and activating nuclear factor-kappa B (NF-κB) signaling pathways. Based on these facts, we hypothesize that lower levels of microbial SCFAs resulted from gut dysbiosis in diabetic individuals, enhance microbial translocation, and increase the inflammatory responses, inducing tumorigenesis ulteriorly. To this end, we will discuss protective properties of microbial SCFAs and explore the pivotal roles SCFAs played in the link of DM with cancer, so as to take early precautions to reduce the risk of cancer in patients with DM.

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Velma T. E. Aho ◽  
Madelyn C. Houser ◽  
Pedro A. B. Pereira ◽  
Jianjun Chang ◽  
Knut Rudi ◽  
...  

Abstract Background Previous studies have reported that gut microbiota, permeability, short-chain fatty acids (SCFAs), and inflammation are altered in Parkinson’s disease (PD), but how these factors are linked and how they contribute to disease processes and symptoms remains uncertain. This study sought to compare and identify associations among these factors in PD patients and controls to elucidate their interrelations and links to clinical manifestations of PD. Methods Stool and plasma samples and clinical data were collected from 55 PD patients and 56 controls. Levels of stool SCFAs and stool and plasma inflammatory and permeability markers were compared between patients and controls and related to one another and to the gut microbiota. Results Calprotectin was increased and SCFAs decreased in stool in PD in a sex-dependent manner. Inflammatory markers in plasma and stool were neither intercorrelated nor strongly associated with SCFA levels. Age at PD onset was positively correlated with SCFAs and negatively correlated with CXCL8 and IL-1β in stool. Fecal zonulin correlated positively with fecal NGAL and negatively with PD motor and non-motor symptoms. Microbiota diversity and composition were linked to levels of SCFAs, inflammatory factors, and zonulin in stool. Certain relationships differed between patients and controls and by sex. Conclusions Intestinal inflammatory responses and reductions in fecal SCFAs occur in PD, are related to the microbiota and to disease onset, and are not reflected in plasma inflammatory profiles. Some of these relationships are distinct in PD and are sex-dependent. This study revealed potential alterations in microbiota-host interactions and links between earlier PD onset and intestinal inflammatory responses and reduced SCFA levels, highlighting candidate molecules and pathways which may contribute to PD pathogenesis and clinical presentation and which warrant further investigation.


2021 ◽  
Author(s):  
Song-Tao Fan ◽  
Zhihong Zhang ◽  
yadong zhong ◽  
Chang Li ◽  
Xiao Jun Huang ◽  
...  

Fructans such as fructo-oligosaccharide (FOS) and inulin have been reported to directly regulate ileal inflammatory responses in lipopolysaccharide (LPS)-induced endotoxemic mice, without alterations in the colonic microbiota. Firstly, we replicated...


2009 ◽  
Vol 420 (2) ◽  
pp. 211-219 ◽  
Author(s):  
Nanda Burger-van Paassen ◽  
Audrey Vincent ◽  
Patrycja J. Puiman ◽  
Maria van der Sluis ◽  
Janneke Bouma ◽  
...  

SCFAs (short-chain fatty acids), fermentation products of bacteria, influence epithelial-specific gene expression. We hypothesize that SCFAs affect goblet-cell-specific mucin MUC2 expression and thereby alter epithelial protection. In the present study, our aim was to investigate the mechanisms that regulate butyrate-mediated effects on MUC2 synthesis. Human goblet cell-like LS174T cells were treated with SCFAs, after which MUC2 mRNA levels and stability, and MUC2 protein expression were analysed. SCFA-responsive regions and cis-elements within the MUC2 promoter were identified by transfection and gel-shift assays. The effects of butyrate on histone H3/H4 status at the MUC2 promoter were established by chromatin immunoprecipitation. Butyrate (at 1 mM), as well as propionate, induced an increase in MUC2 mRNA levels. MUC2 mRNA levels returned to basal levels after incubation with 5–15 mM butyrate. Interestingly, this decrease was not due to loss of RNA stability. In contrast, at concentrations of 5–15 mM propionate, MUC2 mRNA levels remained increased. Promoter-regulation studies revealed an active butyrate-responsive region at −947/−371 within the MUC2 promoter. In this region we identified an active AP1 (c-Fos/c-Jun) cis-element at −818/−808 that mediates butyrate-induced activation of the promoter. Finally, MUC2 regulation by butyrate at 10–15 mM was associated with increased acetylation of histone H3 and H4 and methylation of H3 at the MUC2 promoter. In conclusion, 1 mM butyrate and 1–15 mM propionate increase MUC2 expression. The effects of butyrate on MUC2 mRNA are mediated via AP-1 and acetylation/methylation of histones at the MUC2 promoter.


2019 ◽  
Vol 129 ◽  
pp. 104468 ◽  
Author(s):  
Qin Zeng ◽  
Junli Gong ◽  
Xiyuan Liu ◽  
Chen Chen ◽  
Xiaobo Sun ◽  
...  

2015 ◽  
Vol 308 (4) ◽  
pp. R283-R293 ◽  
Author(s):  
Zhongyan Lu ◽  
Hongbing Gui ◽  
Lei Yao ◽  
Lei Yan ◽  
Holger Martens ◽  
...  

Currently, the mechanism(s) responsible for the regulation of urea transporter B (UT-B) expression levels in the epithelium of the rumen remain unclear. We hypothesized that rumen fermentation products affect ruminal UT-B expression. Therefore, the effects of short-chain fatty acids (SCFA), pH, ammonia, and urea on mRNA and protein levels of UT-B were assayed in primary rumen epithelial cell cultures and in rumen epithelium obtained from intact goats. In vitro, SCFA and acidic pH were found to synergetically stimulate both mRNA and protein expression of UT-B, whereas NH4Cl decreased mRNA and protein levels of UT-B at pH 6.8. Treatment with urea increased both levels at pH 7.4. When goats received a diet rich in nitrogen (N) and nonfiber carbohydrates (NFC), their rumen epithelium had higher levels of UT-B, and the rumen contained higher concentrations of SCFA and NH3-N with a lower pH. An increase in plasma urea-N concentration was also observed compared with the plasma of the goats that received a diet low in N and NFC. In a second feeding trial, goats that received a NFC-rich, but isonitrogenous, diet had higher mRNA and protein levels of UT-B, and higher levels of G protein-coupled receptor (GPR) 41 and GPR4, in their rumen epithelium. The ruminal concentrations of SCFA and NH3-N also increased, while a lower pH was detected. In contrast, the serum urea-N concentrations remained unchanged. These data indicate that ruminal SCFA and pH are key factors, via GPR4 and GPR41, in the dietary regulation of UT-B expression, and they have priority over changes in plasma urea.


2018 ◽  
Vol 315 (5) ◽  
pp. G788-G798 ◽  
Author(s):  
Pekka Määttänen ◽  
Eberhard Lurz ◽  
Steven R. Botts ◽  
Richard Y. Wu ◽  
C. William Yeung ◽  
...  

Flaxseed is high in ω-3 polyunsaturated fatty acids, fiber, and lignans known to lower cholesterol levels. However, its use for prevention or treatment of inflammatory bowel diseases has yielded mixed results, perhaps related to dietary interactions. In this study, we evaluated the impact of ground flaxseed supplementation on the severity of Citrobacter rodentium-induced colitis in the setting of either a high-fat (HF, ~36%kcal) or reduced-fat (RF, ~12%kcal) diet. After weaning, C57BL/6 mice ( n = 8–15/treatment) were fed ground flaxseed (7 g/100 g diet) with either HF (HF Flx) or RF (RF Flx) diets for 4 wk before infection with C. rodentium or sham gavage. Weight changes, mucosal inflammation, pathogen burden, gut microbiota composition, tissue polyunsaturated fatty acids, and cecal short-chain fatty acids were compared over a 14-day infection period. The RF diet protected against C. rodentium-induced colitis, whereas the RF Flx diet increased pathogen burden, exacerbated gut inflammation, and promoted gut dysbiosis. When compared with the RF diet, both HF and HF Flx diets resulted in more severe pathology in response to C. rodentium infection. Our findings demonstrate that although an RF diet protected against C. rodentium-induced colitis and associated gut dysbiosis in mice, beneficial effects were diminished with ground flaxseed supplementation. NEW & NOTEWORTHY Our results demonstrate a strong protective effect of a reduced-fat diet against intestinal inflammation, dysbiosis, and pathogen burden during Citrobacter rodentium-induced colitis. However, ground flaxseed supplementation in the setting of a reduced-fat diet exacerbated colitis despite higher levels of intestinal n-3 polyunsaturated fatty acids and cecal short-chain fatty acids.


Sign in / Sign up

Export Citation Format

Share Document