Microbiota-related effects of prebiotic fibres in lipopolysaccharide-induced endotoxemic mice: short chain fatty acids production and gut commensal translocation

2021 ◽  
Author(s):  
Song-Tao Fan ◽  
Zhihong Zhang ◽  
yadong zhong ◽  
Chang Li ◽  
Xiao Jun Huang ◽  
...  

Fructans such as fructo-oligosaccharide (FOS) and inulin have been reported to directly regulate ileal inflammatory responses in lipopolysaccharide (LPS)-induced endotoxemic mice, without alterations in the colonic microbiota. Firstly, we replicated...

2020 ◽  
Vol 15 (1) ◽  
pp. 52-56
Author(s):  
Sri Winarti ◽  
Agung Pasetyo

The consumption of prebiotics is known to affect the balance of gut microbiota. The purpose of this study was to explore how a galactomannan-rich effervescent drink can affect the population of Lactobacillus, Bifidobacterium, E. coli, and the concentration of short-chain fatty acids in the cecum of rats. Twenty-eight male Wistar rats (aged 2 months) were divided equally into 7 groups and treated orally each day for 15 days with 2 mL effervescent drinks with increasing levels of prebiotic galactomannan. The dosage of 500 mg galactomannan increased the growth of Lactobacillus spp. and Bifidobacterium spp. with inhibition of the growth of E.coli with increased formation of short-chain fatty acids such as acetate, propionate, and butyrate in the cecum of rats.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Velma T. E. Aho ◽  
Madelyn C. Houser ◽  
Pedro A. B. Pereira ◽  
Jianjun Chang ◽  
Knut Rudi ◽  
...  

Abstract Background Previous studies have reported that gut microbiota, permeability, short-chain fatty acids (SCFAs), and inflammation are altered in Parkinson’s disease (PD), but how these factors are linked and how they contribute to disease processes and symptoms remains uncertain. This study sought to compare and identify associations among these factors in PD patients and controls to elucidate their interrelations and links to clinical manifestations of PD. Methods Stool and plasma samples and clinical data were collected from 55 PD patients and 56 controls. Levels of stool SCFAs and stool and plasma inflammatory and permeability markers were compared between patients and controls and related to one another and to the gut microbiota. Results Calprotectin was increased and SCFAs decreased in stool in PD in a sex-dependent manner. Inflammatory markers in plasma and stool were neither intercorrelated nor strongly associated with SCFA levels. Age at PD onset was positively correlated with SCFAs and negatively correlated with CXCL8 and IL-1β in stool. Fecal zonulin correlated positively with fecal NGAL and negatively with PD motor and non-motor symptoms. Microbiota diversity and composition were linked to levels of SCFAs, inflammatory factors, and zonulin in stool. Certain relationships differed between patients and controls and by sex. Conclusions Intestinal inflammatory responses and reductions in fecal SCFAs occur in PD, are related to the microbiota and to disease onset, and are not reflected in plasma inflammatory profiles. Some of these relationships are distinct in PD and are sex-dependent. This study revealed potential alterations in microbiota-host interactions and links between earlier PD onset and intestinal inflammatory responses and reduced SCFA levels, highlighting candidate molecules and pathways which may contribute to PD pathogenesis and clinical presentation and which warrant further investigation.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4195 ◽  
Author(s):  
Jose F. Garcia-Mazcorro ◽  
Nara N. Lage ◽  
Susanne Mertens-Talcott ◽  
Stephen Talcott ◽  
Boon Chew ◽  
...  

Cherries are fruits containing fiber and bioactive compounds (e.g., polyphenolics) with the potential of helping patients with diabetes and weight disorders, a phenomenon likely related to changes in the complex host-microbiota milieu. The objective of this study was to investigate the effect of cherry supplementation on the gut bacterial composition, concentrations of caecal short-chain fatty acids (SCFAs) and biomarkers of gut health using an in vivo model of obesity. Obese diabetic (db/db) mice received a supplemented diet with 10% cherry powder (supplemented mice, n = 12) for 12 weeks; obese (n = 10) and lean (n = 10) mice served as controls and received a standard diet without cherry. High-throughput sequencing of the 16S rRNA gene and quantitative real-time PCR (qPCR) were used to analyze the gut microbiota; SCFAs and biomarkers of gut health were also measured using standard techniques. According to 16S sequencing, supplemented mice harbored a distinct colonic microbiota characterized by a higher abundance of mucin-degraders (i.e., Akkermansia) and fiber-degraders (the S24-7 family) as well as lower abundances of Lactobacillus and Enterobacteriaceae. Overall this particular cherry-associated colonic microbiota did not resemble the microbiota in obese or lean controls based on the analysis of weighted and unweighted UniFrac distance metrics. qPCR confirmed some of the results observed in sequencing, thus supporting the notion that cherry supplementation can change the colonic microbiota. Moreover, the SCFAs detected in supplemented mice (caproate, methyl butyrate, propionate, acetate and valerate) exceeded those concentrations detected in obese and lean controls except for butyrate. Despite the changes in microbial composition and SCFAs, most of the assessed biomarkers of inflammation, oxidative stress, and intestinal health in colon tissues and mucosal cells were similar in all obese mice with and without supplementation. This paper shows that dietary supplementation with cherry powder for 12 weeks affects the microbiota and the concentrations of SCFAs in the lower intestinal tract of obese db/db diabetic mice. These effects occurred in absence of differences in most biomarkers of inflammation and other parameters of gut health. Our study prompts more research into the potential clinical implications of cherry consumption as a dietary supplement in diabetic and obese human patients.


2020 ◽  
Vol 134 (2) ◽  
pp. 289-302 ◽  
Author(s):  
Yanling Chang ◽  
Yunyan Chen ◽  
Qiong Zhou ◽  
Chuan Wang ◽  
Lei Chen ◽  
...  

Abstract Preeclampsia (PE) is regarded as a pregnancy-associated hypertension disorder that is related to excessive inflammatory responses. Although the gut microbiota (GM) and short-chain fatty acids (SCFAs) have been related to hypertension, their effects on PE remain unknown. We determined the GM abundance and faecal SCFA levels by 16S ribosomal RNA (rRNA) sequencing and gas chromatography, respectively, using faecal samples from 27 patients with severe PE and 36 healthy, pregnant control subjects. We found that patients with PE had significantly decreased GM diversity and altered GM abundance. At the phylum level, patients with PE exhibited decreased abundance of Firmicutes albeit increased abundance of Proteobacteria; at the genus level, patients with PE had lower abundance of Blautia, Eubacterium_rectale, Eubacterium_hallii, Streptococcus, Bifidobacterium, Collinsella, Alistipes, and Subdoligranulum, albeit higher abundance of Enterobacter and Escherichia_Shigella. The faecal levels of butyric and valeric acids were significantly decreased in patients with PE and significantly correlated with the above-mentioned differential GM abundance. We predicted significantly increased abundance of the lipopolysaccharide (LPS)-synthesis pathway and significantly decreased abundance of the G protein-coupled receptor (GPCR) pathway in patients with PE, based on phylogenetic reconstruction of unobserved states (PICRUSt). Finally, we evaluated the effects of oral butyrate on LPS-induced hypertension in pregnant rats. We found that butyrate significantly reduced the blood pressure (BP) in these rats. In summary, we provide the first evidence linking GM dysbiosis and reduced faecal SCFA to PE and demonstrate that butyrate can directly regulate BP in vivo, suggesting its potential as a therapeutic agent for PE.


2020 ◽  
Vol 11 ◽  
Author(s):  
Qiyu Yang ◽  
Jing Ouyang ◽  
Fengjun Sun ◽  
Jiadan Yang

Converging evidences showed that people with diabetes mellitus (DM) have significantly higher risk for different cancers, of which the exact mechanism underlying the association has not been fully realized. Short-chain fatty acids (SCFAs), the fermentation products of the intestinal microbiota, are an essential source for energy supply in gut epithelial cells. They have been reported to improve intestinal barrier integrity, prevent microbial translocation, and further dampen inflammation. Gut dysbiosis and reduction in SCFA-producing bacteria as well as SCFAs production in the intestine are commonly seen in metabolic disorders including DM and obesity. Moreover, inflammation can contribute to tumor initiation and progression through multiple pathways, such as enhancing DNA damage, accumulating mutations in tumor suppressor genes Tp53, and activating nuclear factor-kappa B (NF-κB) signaling pathways. Based on these facts, we hypothesize that lower levels of microbial SCFAs resulted from gut dysbiosis in diabetic individuals, enhance microbial translocation, and increase the inflammatory responses, inducing tumorigenesis ulteriorly. To this end, we will discuss protective properties of microbial SCFAs and explore the pivotal roles SCFAs played in the link of DM with cancer, so as to take early precautions to reduce the risk of cancer in patients with DM.


Sign in / Sign up

Export Citation Format

Share Document