scholarly journals Impaired Cellular Immunity to SARS-CoV-2 in Severe COVID-19 Patients

2021 ◽  
Vol 12 ◽  
Author(s):  
Ling Ni ◽  
Meng-Li Cheng ◽  
Yu Feng ◽  
Hui Zhao ◽  
Jingyuan Liu ◽  
...  

The high infection rate and rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) make it a world-wide pandemic. Individuals infected by the virus exhibited different degrees of symptoms, and most convalescent individuals have been shown to develop both cellular and humoral immune responses. However, virus-specific adaptive immune responses in severe patients during acute phase have not been thoroughly studied. Here, we found that in a group of COVID-19 patients with acute respiratory distress syndrome (ARDS) during hospitalization, most of them mounted SARS-CoV-2-specific antibody responses, including neutralizing antibodies. However, compared to healthy controls, the percentages and absolute numbers of both NK cells and CD8+ T cells were significantly reduced, with decreased IFNγ expression in CD4+ T cells in peripheral blood from severe patients. Most notably, their peripheral blood lymphocytes failed in producing IFNγ against viral proteins. Thus, severe COVID-19 patients at acute infection stage developed SARS-CoV-2-specific antibody responses but were impaired in cellular immunity, which emphasizes on the role of cellular immunity in COVID-19.

Author(s):  
Ling Ni ◽  
Meng-Li Cheng ◽  
Hui Zhao ◽  
Yu Feng ◽  
Jingyuan Liu ◽  
...  

The World Health Organization has declared SARS-CoV-2 virus outbreak a world-wide pandemic. Individuals infected by the virus exhibited different degrees of symptoms, the basis of which remains largely unclear. Currently, though convalescent individuals have been shown with both cellular and humoral immune responses, there is very limited understanding on the immune responses, especially adaptive immune responses, in patients with severe COVID-19. Here, we examined 10 blood samples from COVID-19 patients with acute respiratory distress syndrome (ARDS). The majority of them (70%) mounted SARS-CoV-2-specific humoral immunity with production of neutralizing antibodies. However, compared to healthy controls, the percentages and absolute numbers of both NK cells and CD8+ T cells were significantly reduced, accompanied with decreased IFNg expression in CD4+ T cells in peripheral blood from severe patients. Most notably, we failed in detecting SARS-CoV-2-specific IFNg production by peripheral blood lymphocytes from these patients. Our work thus indicates that COVID-19 patients with severe symptoms are associated with defective cellular immunity, which not only provides insights on understanding the pathogenesis of COVID-19, but also has implications in developing an effective vaccine to SARS-CoV-2.


2021 ◽  
Author(s):  
Paulina Kaplonek ◽  
Deniz Cizmeci ◽  
Stephanie Fischinger ◽  
Ai-ris Collier ◽  
Todd Suscovich ◽  
...  

The successful development of several COVID-19 vaccines has substantially reduced morbidity and mortality in regions of the world where the vaccines have been deployed. However, in the wake of the emergence of viral variants, able to evade vaccine induced neutralizing antibodies, real world vaccine efficacy has begun to show differences across the mRNA platforms, suggesting that subtle variation in immune responses induced by the BNT162b2 and mRNA1273 vaccines may provide differential protection. Given our emerging appreciation for the importance of additional antibody functions, beyond neutralization, here we profiled the post-boost binding and functional capacity of the humoral response induced by the BNT162b2 and mRNA-1273 in a cohort of hospital staff. Both vaccines induced robust humoral immune responses to WT SARS-CoV-2 and VOCs. However, differences emerged across epitope-specific responses, with higher RBD- and NTD- specific IgA, as well as functional antibodies (ADNP and ADNK) in mRNA-1273 vaccine recipients. Additionally, RBD-specific antibody depletion highlighted the different roles of non-RBD-specific antibody effector function induced across the mRNA vaccines, providing novel insights into potential differences in protective immunity generated across these vaccines in the setting of newly emerging VOCs.


2008 ◽  
Vol 83 (6) ◽  
pp. 2623-2631 ◽  
Author(s):  
Roberto Calcedo ◽  
Luk H. Vandenberghe ◽  
Soumitra Roy ◽  
Suryanarayan Somanathan ◽  
Lili Wang ◽  
...  

ABSTRACT Recent studies indicate that great apes and macaques chronically shed adenoviruses in the stool. Shedding of adenovirus in the stool of humans is less prevalent, although virus genomes persist in gut-associated lymphoid tissue in the majority of individual samples. Chimpanzees have high levels of broadly reactive neutralizing antibodies to adenoviruses in serum, with very low frequencies of adenovirus-specific T cells in peripheral blood. A similar situation exists in macaques; sampling of guts from macaques demonstrated adenovirus-specific T cells in lamina propria. Humans show intermediate levels of serum neutralizing antibodies, with adenovirus-specific T cells in peripheral blood of all individuals sampled and about 20% of samples from the gut, suggesting a potential role of T cells in better controlling virus replication in the gut. The overall structure of the E3 locus, which is involved in modulating the host's response to infection, is degenerate in humans compared to that in apes, which may contribute to diminished evasion of host immunity. The impact of adenovirus persistence and immune responses should be considered when using adenoviral vectors in gene therapy and genetic vaccines.


2004 ◽  
Vol 78 (1) ◽  
pp. 275-284 ◽  
Author(s):  
Vanessa M. Hirsch ◽  
Sampa Santra ◽  
Simoy Goldstein ◽  
Ronald Plishka ◽  
Alicia Buckler-White ◽  
...  

ABSTRACT A fraction of simian immunodeficiency virus (SIV)-infected macaques develop rapidly progressive disease in the apparent absence of detectable SIV-specific antibody responses. To characterize the immunopathogenesis of this syndrome, we studied viral load, CD4+ T-lymphocyte numbers as well as cellular and humoral immune responses to SIV and other exogenous antigens in four SIVsm-infected rhesus macaques that progressed to AIDS 9 to 16 weeks postinoculation. Each of these animals exhibited high levels of viremia but showed relatively preserved CD4 T lymphocytes in blood and lymphoid tissues at the time of death. Transient SIV-specific antibody responses and cytotoxic T-lymphocyte responses were observed at 2 to 4 weeks postinoculation. Two of the macaques that were immunized sequentially with tetanus toxoid and hepatitis A virus failed to develop antibody to either antigen. These studies show that the SIV-infected rapid progressor macaques initially mounted an appropriate but transient cellular and humoral immune response. The subsequent immune defect in these animals appeared to be global, affecting both cellular and humoral immunity to SIV as well as immune responses against unrelated antigens. The lack of CD4 depletion and loss of humoral and cellular immune responses suggest that their immune defect may be due to an early loss in T helper function.


Author(s):  
Claire L Gordon ◽  
Olivia C Smibert ◽  
Natasha E Holmes ◽  
Kyra Y L Chua ◽  
Rose Morgan ◽  
...  

Abstract We describe SARS-CoV-2-specific immune responses in a patient with lymphoma and recent PD-1 inhibitor therapy with late onset of severe COVID-19 disease and prolonged SARS-CoV-2 replication, in comparison to age-matched and immunocompromised controls. High levels of HLA-DR +/CD38 +-activation, IL-6 and IL-18 in the absence of B cells and PD-1 expression was observed. SARS-CoV-2-specific antibody responses were absent and SARS-CoV-2 specific T cells were minimally detected. This case highlights challenges in managing immunocompromised hosts who may fail to mount effective virus-specific immune responses.


2021 ◽  
Author(s):  
Carolina Garrido ◽  
Jillian H Hurst ◽  
Cynthia G. Lorang ◽  
Jhoanna N. Aquino ◽  
Javier Rodriguez ◽  
...  

As SARS-CoV-2 continues to spread globally, questions have emerged regarding the strength and durability of immune responses in specific populations. In this study, we evaluated humoral immune responses in 69 children and adolescents with asymptomatic or mild symptomatic SARS-CoV-2 infection. We detected robust IgM, IgG, and IgA antibody responses to a broad array of SARS-CoV-2 antigens at the time of acute infection and 2 and 4 months after acute infection in all participants. Notably, these antibody responses were associated with virus neutralizing activity that was still detectable 4 months after acute infection in 94% of children. Moreover, antibody responses and neutralizing activity in sera from children and adolescents were comparable or superior to those observed in sera from 24 adults with mild symptomatic infection. Taken together, these findings indicate children and adolescents with mild or asymptomatic SARS-CoV-2 infection generate robust and durable humoral immune responses that are likely to protect from reinfection.


1975 ◽  
Vol 142 (1) ◽  
pp. 50-60 ◽  
Author(s):  
J A Kapp ◽  
C W Pierce ◽  
B Benacerraf

Mice which are genetic nonresponders to the random terpolymer of L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT) not only fail to develop GAT-specific antibody responses when stimulated with soluble GAT either in vivo or in vitro, but develop GAT-specific T cells which suppress the GAT-specific plaque-forming cell response of normal nonresponder mice stimulated with GAT complexed to methylated bovine serum albumin (MBSA).Thus, both responder and nonresponder mice have T cells which recognize GAT. However, nonresponder mice can develop GAT-specific helper T cells if immunized with GAT bound to MBSA or to macrophages. The relevance of Ir gene-controlled responses is discussed.


2013 ◽  
Vol 211 (1) ◽  
pp. 137-151 ◽  
Author(s):  
Jae-Hoon Chang ◽  
Hongbo Hu ◽  
Jin Jin ◽  
Nahum Puebla-Osorio ◽  
Yichuan Xiao ◽  
...  

Regulatory T cells (Treg cells) control different aspects of immune responses, but how the effector functions of Treg cells are regulated is incompletely understood. Here we identified TNF receptor–associated factor 3 (TRAF3) as a regulator of Treg cell function. Treg cell–specific ablation of TRAF3 impaired CD4 T cell homeostasis, characterized by an increase in the Th1 type of effector/memory T cells. Moreover, the ablation of TRAF3 in Treg cells resulted in increased antigen-stimulated activation of follicular T helper cells (TFH cells), coupled with heightened formation of germinal centers and production of high-affinity IgG antibodies. Although the loss of TRAF3 did not reduce the overall frequency of Treg cells, it attenuated the antigen-stimulated production of follicular Treg cells (TFR cells). TRAF3 signaling in Treg cells was required to maintain high level expression of inducible co-stimulator (ICOS), which in turn was required for TFR cell generation and inhibition of antibody responses. These findings establish TRAF3 as a mediator of Treg cell function in the regulation of antibody responses and suggest a role for TRAF3 in mediating ICOS expression in Treg cells.


2020 ◽  
Author(s):  
Xingbo Liu ◽  
Zhihao Xin ◽  
Fan Zhang ◽  
Luyao zhang ◽  
Hanyu Yan ◽  
...  

Abstract The inactivated bovine herpesvirus type 1(BoHV-1) vaccines are generally safe and suitable for use in dairy and pregnant cattle, but induces weaker cellular immune responses and shorter antibody responses compared with the modified live virus vaccine. In this study, we used polystyrene (PS) nanoparticles (100 nm) as a carrier for purified inactivated broken BoHV-1 to improve cellular and humoral immune responses compared with the traditional inactivated vaccine. Mice were injected intramuscularly with the inactivated complex mixed with ISA206 adjuvant. Transmission electron microscopy showed that the PS nanoparticles displayed broken BoHV-1 on their surfaces. After validation of BoHV-1 and gB gC gD gE tegument proteins, it proved that the BoHV-conjugated PS nanoparticles induced higher-titer and more durable antibody responses. The inactivated BoHV-PS nanoparticle complex elicited neutralizing antibodies (titer ~2 6 ) in 5 weeks post-immunization in mice. The CD4/CD8 ratio was higher in mice immunized with PS nanoparticles compared with other groups. However, this ratio reached its maximum 1 week later than in mice immunized with ISA206+BoHV-1 or BoHV-1. Levels of interleukin (IL)-4, IL-6, and interferon-γ in followed similar patterns. In conclusion, this pilot study demonstrated that PS nanoparticles can adjuvant inactivated BoHV-1 vaccines, enhancing both cell-mediated immune responses and the duration of antibody responses. This study provides the foundation for a new development platform for inactivated vaccines, which can elicit potent cellular and humoral immune responses in animals and humans.The inactivated bovine herpesvirus type 1(BoHV-1) vaccines are generally safe and suitable for use in dairy and pregnant cattle, but induces weaker cellular immune responses and shorter antibody responses compared with the modified live virus vaccine. In this study, we used polystyrene (PS) nanoparticles (100 nm) as a carrier for purified inactivated broken BoHV-1 to improve cellular and humoral immune responses compared with the traditional inactivated vaccine. Mice were injected intramuscularly with the inactivated complex mixed with ISA206 adjuvant. Transmission electron microscopy showed that the PS nanoparticles displayed broken BoHV-1 on their surfaces. After validation of BoHV-1 and gB gC gD gE tegument proteins, it proved that the BoHV-conjugated PS nanoparticles induced higher-titer and more durable antibody responses. The inactivated BoHV-PS nanoparticle complex elicited neutralizing antibodies (titer ~2 6 ) in 5 weeks post-immunization in mice. The CD4/CD8 ratio was higher in mice immunized with PS nanoparticles compared with other groups. However, this ratio reached its maximum 1 week later than in mice immunized with ISA206+BoHV-1 or BoHV-1. Levels of interleukin (IL)-4, IL-6, and interferon-γ in followed similar patterns. In conclusion, this pilot study demonstrated that PS nanoparticles can adjuvant inactivated BoHV-1 vaccines, enhancing both cell-mediated immune responses and the duration of antibody responses. This study provides the foundation for a new development platform for inactivated vaccines, which can elicit potent cellular and humoral immune responses in animals and humans.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Ernesta Cavalcanti ◽  
Maria Antonietta Isgrò ◽  
Domenica Rea ◽  
Lucia Di Capua ◽  
Giusy Trillò ◽  
...  

Abstract Background Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection and the resulting disease, coronavirus disease 2019 (COVID-19), have spread to millions of people globally, requiring the development of billions of different vaccine doses. The SARS-CoV-2 spike mRNA vaccine (named BNT162b2/Pfizer), authorized by the FDA, has shown high efficacy in preventing SARS-CoV-2 infection after administration of two doses in individuals 16 years of age and older. In the present study, we retrospectively evaluated the differences in the SARS-CoV-2 humoral immune response after vaccine administration in the two different cohorts of workers at the INT - IRCCS “Fondazione Pascale” Cancer Center (Naples, Italy): previously infected to SARS-CoV-2 subjects and not infected to SARS-CoV-2 subjects. Methods We determined specific anti-RBD (receptor-binding domain) titers against trimeric spike glycoprotein (S) of SARS-CoV-2 by Roche Elecsys Anti-SARS-CoV-2 S immunoassay in serum samples of 35 healthcare workers with a previous documented history of SARS-CoV-2 infection and 158 healthcare workers without, after 1 and 2 doses of vaccine, respectively. Moreover, geometric mean titers and relative fold changes (FC) were calculated. Results Both previously infected and not infected to SARS-CoV-2 subjects developed significant immune responses to SARS-CoV-2 after the administration of 1 and 2 doses of vaccine, respectively. Anti-S antibody responses to the first dose of vaccine were significantly higher in previously SARS-CoV-2-infected subjects in comparison to titers of not infected subjects after the first as well as the second dose of vaccine. Fold changes for subjects previously infected to SARS-CoV-2 was very modest, given the high basal antibody titer, as well as the upper limit of 2500.0 BAU/mL imposed by the Roche methods. Conversely, for naïve subjects, mean fold change following the first dose was low ($$ \overline{x} $$ x ¯ =1.6), reaching 3.8 FC in 72 subjects (45.6%) following the second dose. Conclusions The results showed that, as early as the first dose, SARS-CoV-2-infected individuals developed a remarkable and statistically significant immune response in comparison to those who did not contract the virus previously, suggesting the possibility of administering only one dose in previously SARS-CoV-2-infected subjects. FC for previously infected subjects should not be taken into account for the generally high pre-vaccination values. Conversely, FC for not infected subjects, after the second dose, were = 3.8 in > 45.0% of vaccinees, and ≤ 3.1 in 19.0%, the latter showing a potential susceptibility to further SARS-CoV-2 infection.


Sign in / Sign up

Export Citation Format

Share Document