scholarly journals Machine Learning Analysis of Naïve B-Cell Receptor Repertoires Stratifies Celiac Disease Patients and Controls

2021 ◽  
Vol 12 ◽  
Author(s):  
Or Shemesh ◽  
Pazit Polak ◽  
Knut E. A. Lundin ◽  
Ludvig M. Sollid ◽  
Gur Yaari

Celiac disease (CeD) is a common autoimmune disorder caused by an abnormal immune response to dietary gluten proteins. The disease has high heritability. HLA is the major susceptibility factor, and the HLA effect is mediated via presentation of deamidated gluten peptides by disease-associated HLA-DQ variants to CD4+ T cells. In addition to gluten-specific CD4+ T cells the patients have antibodies to transglutaminase 2 (autoantigen) and deamidated gluten peptides. These disease-specific antibodies recognize defined epitopes and they display common usage of specific heavy and light chains across patients. Interactions between T cells and B cells are likely central in the pathogenesis, but how the repertoires of naïve T and B cells relate to the pathogenic effector cells is unexplored. To this end, we applied machine learning classification models to naïve B cell receptor (BCR) repertoires from CeD patients and healthy controls. Strikingly, we obtained a promising classification performance with an F1 score of 85%. Clusters of heavy and light chain sequences were inferred and used as features for the model, and signatures associated with the disease were then characterized. These signatures included amino acid (AA) 3-mers with distinct bio-physiochemical characteristics and enriched V and J genes. We found that CeD-associated clusters can be identified and that common motifs can be characterized from naïve BCR repertoires. The results may indicate a genetic influence by BCR encoding genes in CeD. Analysis of naïve BCRs as presented here may become an important part of assessing the risk of individuals to develop CeD. Our model demonstrates the potential of using BCR repertoires and in particular, naïve BCR repertoires, as disease susceptibility markers.

2020 ◽  
Author(s):  
Or Shemesh ◽  
Pazit Polak ◽  
Knut E.A. Lundin ◽  
Ludvig M. Sollid ◽  
Gur Yaari

AbstractCeliac disease (CeD) is a common autoimmune disorder caused by an abnormal immune response to dietary gluten proteins. The disease has high heritability. HLA is the major susceptibility factor, and the HLA effect is mediated via presentation of deamidated gluten peptides by disease-associated HLA-DQ variants to CD4+ T cells. In addition to gluten-specific CD4+ T cells the patients have antibodies to transglutaminase 2 (autoantigen) and deamidated gluten peptides. These disease-specific antibodies recognize defined epitopes and they display common usage of specific heavy and light chains across patients. Interactions between T cells and B cells are likely central in the pathogenesis, but how the repertoires of naïve T and B cells relate to the pathogenic effector cells is unexplored. To this end, we applied machine learning classification models to naïve B cell receptor (BCR) repertoires from CeD patients and healthy controls. Strikingly, we obtained a promising classification performance with an F1 score of 85%. Clusters of heavy and light chain sequences were inferred and used as features for the model, and signatures associated with the disease were then characterized. These signatures included amino acid (AA) 3-mers with distinct bio-physiochemical characteristics and enriched V and J genes. We found that CeD-associated clusters can be identified and that common motifs can be characterized from naïve BCR repertoires. The results may indicate a genetic influence by BCR encoding genes in CeD. Analysis of naïve BCRs as presented here may become an important part of assessing the risk of individuals to develop CeD. Our model demonstrates the potential of using BCR repertoires and in particular, naïve BCR repertoires, as disease susceptibility markers.


Author(s):  
Wen Wen ◽  
Wenru Su ◽  
Hao Tang ◽  
Wenqing Le ◽  
Xiaopeng Zhang ◽  
...  

AbstractCOVID-19, caused by SARS-CoV-2, has recently affected over 300,000 people and killed more than 10,000. The manner in which the key immune cell subsets change and their states during the course of COVID-19 remain unclear. Here, we applied single-cell technology to comprehensively characterize transcriptional changes in peripheral blood mononuclear cells during the recovery stage of COVID-19. Compared with healthy controls, in patients in the early recovery stage (ERS) of COVID-19, T cells decreased remarkably, whereas monocytes increased. A detailed analysis of the monocytes revealed that there was an increased ratio of classical CD14++ monocytes with high inflammatory gene expression as well as a greater abundance of CD14++IL1B+ monocytes in the ERS. CD4+ and CD8+ T cells decreased significantly and expressed high levels of inflammatory genes in the ERS. Among the B cells, the plasma cells increased remarkably, whereas the naïve B cells decreased. Our study identified several novel B cell-receptor (BCR) changes, such as IGHV3-23 and IGHV3-7, and confirmed isotypes (IGHV3-15, IGHV3-30, and IGKV3-11) previously used for virus vaccine development. The strongest pairing frequencies, IGHV3-23-IGHJ4, indicated a monoclonal state associated with SARS-CoV-2 specificity. Furthermore, integrated analysis predicted that IL-1β and M-CSF may be novel candidate target genes for inflammatory storm and that TNFSF13, IL-18, IL-2 and IL-4 may be beneficial for the recovery of COVID-19 patients. Our study provides the first evidence of an inflammatory immune signature in the ERS, suggesting that COVID-19 patients are still vulnerable after hospital discharge. Our identification of novel BCR signaling may lead to the development of vaccines and antibodies for the treatment of COVID-19.Highlights-The immune response was sustained for more than 7 days in the early recovery stage of COVID-19, suggesting that COVID-19 patients are still vulnerable after hospital discharge.-Single-cell analysis revealed a predominant subset of CD14++ IL1β+ monocytes in patients in the ERS of COVID-19.-Newly identified virus-specific B cell-receptor changes, such as IGHV3-23, IGHV3-7, IGHV3-15, IGHV3-30, and IGKV3-11, could be helpful in the development of vaccines and antibodies against SARS-CoV-2.-IL-1β and M-CSF were discovered as novel mediators of inflammatory cytokine storm, and TNFSF13, IL-2, IL-4, and IL-18 may be beneficial for recovery.


2016 ◽  
Vol 5 (11) ◽  
pp. e1232220 ◽  
Author(s):  
Jinsheng Weng ◽  
Flavio Egidio Baio ◽  
Kelsey E. Moriarty ◽  
Hiroki Torikai ◽  
Hua Wang ◽  
...  

2004 ◽  
Vol 279 (19) ◽  
pp. 19523-19530 ◽  
Author(s):  
Benoit Guilbault ◽  
Robert J. Kay

RasGRP1 is a guanine nucleotide exchange factor that activates Ras GTPases and is activated downstream of antigen receptors on both T and B lymphocytes. Ras-GRP1 provides signals to immature T cells that confer survival and proliferation, but RasGRP1 also promotes T cell receptor-mediated deletion of mature T cells. We used the WEHI-231 cell line as an experimental system to determine whether RasGRP1 can serve as a quantitative modifier of B cell receptor-induced deletion of immature B cells. A 2-fold elevation in RasGRP1 expression markedly increased apoptosis of WEHI-231 cells following B cell receptor ligation, whereas a dominant negative mutant of RasGRP1 suppressed B cell receptor-induced apoptosis. Activation of ERK1 or ERK2 kinases was not required for RasGRP1-mediated apoptosis. Instead, elevated RasGRP1 expression caused down-regulation of NF-κB and Bcl-xL, which provide survival signals counter-acting apoptosis induction by B cell receptor. Inhibition of NF-κB was sufficient to enhance B cell receptor-induced apoptosis of WEHI-231 cells, and ligation of co-stimulatory receptors that activate NF-κB suppressed the ability of RasGRP1 to promote B cell receptor-induced apoptosis. These experiments define a novel apoptosis-promoting pathway leading from B cell receptor to the inhibition of NF-κB and demonstrate that differential expression of RasGRP1 has the potential to modulate the sensitivities of B cells to negative selection following antigen encounter.


2019 ◽  
Vol 116 (51) ◽  
pp. 25850-25859 ◽  
Author(s):  
Peter Csaba Huszthy ◽  
Ramakrishna Prabhu Gopalakrishnan ◽  
Johanne Tracey Jacobsen ◽  
Ole Audun Werner Haabeth ◽  
Geir Åge Løset ◽  
...  

The B cell receptors (BCRs) for antigen express variable (V) regions that are enormously diverse, thus serving as markers on individual B cells. V region-derived idiotypic (Id) peptides can be displayed as pId:MHCII complexes on B cells for recognition by CD4+T cells. It is not known if naive B cells spontaneously display pId:MHCII in vivo or if BCR ligation is required for expression, thereby enabling collaboration between Id+B cells and Id-specific T cells. Here, using a mouse model, we show that naive B cells do not express readily detectable levels of pId:MHCII. However, BCR ligation by Ag dramatically increases physical display of pId:MHCII, leading to activation of Id-specific CD4+T cells, extrafollicular T–B cell collaboration and some germinal center formation, and production of Id+IgG. Besides having implications for immune regulation, the results may explain how persistent activation of self-reactive B cells induces the development of autoimmune diseases and B cell lymphomas.


2020 ◽  
Vol 14 (Supplement_1) ◽  
pp. S166-S166
Author(s):  
T Nagaishi ◽  
N Tsugawa ◽  
D Yamada ◽  
T Watabe ◽  
M Onizawa ◽  
...  

Abstract Background It has been recently shown that the carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) expressed in T cells may regulate immune responses in the gut. Moreover, it has also been reported that the treatments with either an agonistic monoclonal antibody (mAb) or natural ligands for this molecule can suppress colitis severity in murine models of inflammatory bowel diseases (IBD). On the other hand, in addition to T cells, B cells are also an important population in the gut-associated lymphoid tissues (GALT) that orchestrate mucosal homeostasis. However, the role of CEACAM1 in B cells has not been elucidated. Methods We analysed primary B-cell subsets in the lymphoid tissues of wild-type C57BL6 mice as well as a murine B-cell line, A20, to determine the expressions and functions of CEACAM1. Results FACS analysis of the lymphocyte subsets isolated from secondary lymphoid tissues such as spleen, mesenteric lymph nodes and Peyer’s patches of C57BL6 revealed higher expression level of CEACAM1 on B-cell surface than that of T cells. Bone marrow analysis showed that such CEACAM1 expression was increased during maturation and differentiation process of B cells. When isolated splenic B cells were stimulated with LPS, anti-CD40 or anti-μ chain Abs in the presence of agonistic anti-CEACAM1 mAb, the usual increased cytokine productions (such as IL-4 and IL-5 by activation via B cell receptor (BCR) signalling) were specifically suppressed by CEACAM1 signalling rather than B-cell activations via either TLR4 or CD40 signalling. Immunofluorescent studies using confocal microscopy revealed co-localisation of CEACAM1 and BCR when B cells were activated with anti-μ chain Ab. Given these results, A20 cells were transfected with CEACAM1 cDNA. Biochemical analysis showed that an inducible overexpression of CEACAM1 suppressed the BCR signalling in these cells when compared with that of vector alone-transfected control. Moreover, the overexpression of CEACAM1 in these cells resulted in reduced expressions of activation markers such as CD69, CD80, CD86, MHC-I and -II on the cell surface. These observations were associated with decreased Ca2+ influx and suppressed cytokine production by the overexpression of CEACAM1 after BCR signal activation. Conclusion These results suggest that CEACAM1 can regulate B-cell activation and differentiation specifically via BCR signalling in the lymphoid tissues. Therefore, this molecule can be a therapeutic target in IBD by regulating of both T-cell and B-cell activation in GALT.


2015 ◽  
Vol 3 (S2) ◽  
Author(s):  
Jinsheng Weng ◽  
Flavio Egidio Baio ◽  
Kelsey Moriarty ◽  
Hiroki Torikai ◽  
Hua Wang ◽  
...  

Blood ◽  
1996 ◽  
Vol 87 (2) ◽  
pp. 465-471 ◽  
Author(s):  
B Falini ◽  
B Bigerna ◽  
L Pasqualucci ◽  
M Fizzotti ◽  
MF Martelli ◽  
...  

The BCL-6 gene encoding a nuclear-located Kruppel-type zinc finger protein is rearranged in about 30% diffuse large B-cell lymphomas and is expressed predominantly in normal germinal center B cells and related lymphomas. These findings suggest that BCL-6 may play a role in regulating differentiation of normal germinal center B cells and that its deregulated expression caused by rearrangements may contribute to lymphomagenesis. This prompted us to investigate the expression of the BCL-6 protein in Hodgkin's disease (HD), focusing on the nodular lymphocyte predominance subtype (NLPHD), which differs from classical HD by virtue of the B-cell nature of the malignant cell population (so- called L&H cells) and its relationship with germinal centers. Forty-one HD samples (19 NLPHD, 12 nodular sclerosis, and 10 mixed cellularity) were immunostained with the monoclonal antibodies PG-B6 and PG-B6p that react with a fixative-sensitive and a formalin-resistant epitope on the aminoterminal region of the BCL-6 gene product, respectively. Strong nuclear positivity for the BCL-6 protein was detected in tumor (L&H) cells in all cases of NLPHD. In contrast, BCL-6 was expressed only in a small percentage of Hodgkin and Reed-Sternberg cells in about 30% of classical HD cases. Notably, the nuclei of reactive CD3+/CD4+ T cells nearby to and rosetting around L&H cells in NLPHD were also strongly BCL-6+, but lacked CD40 ligand (CD40L) expression. This staining pattern clearly differed from that of classical HD, whose cellular background was made up of CD3+/CD4+ T cells showing the BCL-6-/CD40L+ phenotype. These results further support the concept that NLPHD is an histogenetically distinct, B-cell-derived subtype of HD and suggest a role for BCL-6 in its development.


1997 ◽  
Vol 186 (8) ◽  
pp. 1299-1306 ◽  
Author(s):  
James R. Drake ◽  
Paul Webster ◽  
John C. Cambier ◽  
Ira Mellman

B cell receptor (BCR)-mediated antigen processing is a mechanism that allows class II–restricted presentation of specific antigen by B cells at relatively low antigen concentrations. Although BCR-mediated antigen processing and class II peptide loading may occur within one or more endocytic compartments, the functions of these compartments and their relationships to endosomes and lysosomes remain uncertain. In murine B cells, at least one population of class II– containing endocytic vesicles (i.e., CIIV) has been identified and demonstrated to be distinct both physically and functionally from endosomes and lysosomes. We now demonstrate the delivery of BCR-internalized antigen to CIIV within the time frame during which BCR-mediated antigen processing and formation of peptide–class II complexes occurs. Only a fraction of the BCR-internalized antigen was delivered to CIIV, with the majority of internalized antigen being delivered to lysosomes that are largely class II negative. The extensive colocalization of BCR-internalized antigen and newly synthesized class II molecules in CIIV suggests that CIIV may represent a specialized subcellular compartment for BCR-mediated antigen processing. Additionally, we have identified a putative CIIV-marker protein, immunologically related to the Igα subunit of the BCR, which further illustrates the unique nature of these endocytic vesicles.


Sign in / Sign up

Export Citation Format

Share Document