scholarly journals Soluble MD-2 and Heme in Sickle Cell Disease Plasma Promote Pro-Inflammatory Signaling in Endothelial Cells

2021 ◽  
Vol 12 ◽  
Author(s):  
Ping Zhang ◽  
Julia Nguyen ◽  
Fuad Abdulla ◽  
Alexander T. Nelson ◽  
Joan D. Beckman ◽  
...  

Recent evidence indicates that hemolysis in sickle cell disease (SCD) promotes inflammation via innate immune signaling through toll-like receptor 4 (TLR4). Free heme released by hemolyzed red blood cells can bind to myeloid differentiation factor-2 (MD-2) and activate TLR4 pro-inflammatory signaling on endothelium to promote vaso-occlusion and acute chest syndrome in murine models of SCD. MD-2 is co-expressed with TLR4 on cell membranes, but in inflammatory conditions, soluble MD-2 (sMD-2) is elevated in plasma. sMD-2 levels were significantly increased in human and murine sickle (SS) plasma as compared to normal (AA) plasma. Human umbilical vein endothelial cells (HUVEC) and human lung microvascular endothelial cells incubated with human SS plasma had significant increases in pro-inflammatory IL-8, IL-6, and soluble VCAM-1 secretion compared to endothelial cells incubated with AA plasma. The increase in HUVEC IL-8 secretion was blocked by depletion of sMD-2 from SS plasma and enhanced by the addition of sMD-2 to AA plasma. The TLR4 signaling inhibitor, TAK-242, inhibited HUVEC IL-8 secretion in response to SS plasma by 85%. Heme-agarose pull-down assays and UV/Vis spectroscopy demonstrated that heme binds to sMD-2. Hemopexin, a high affinity heme-binding protein, inhibited HUVEC IL-8 secretion induced by SS plasma or SS and AA plasma supplemented with sMD-2. These data suggest that sMD-2 bound to heme might play an important role in pro-inflammatory signaling by endothelium in SCD.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2264-2264 ◽  
Author(s):  
Andreia A. Canalli ◽  
Renata F. Proenca ◽  
Sara T.O. Saad ◽  
Nicola Conran ◽  
Fernando F. Costa

Abstract Leukocytes may have a propagating and, possibly, initiating role in sickle cell disease (SCD) vaso-occlusion. In vivo studies suggest that adherent leukocytes capture sickle erythrocytes in the microcirculation and in vitro studies demonstrate an increased ability of SCD neutrophils (neu) to adhere to fibronectin, endothelial cells and endothelial proteins. Previous studies suggest that the expressions of the major neu integrins, CD11a/CD18 (LFA-1) and CD11b/CD18 (Mac-1) may only be upregulated on the surface of SCD neu following their stimulation, indicating that alterations in integrin function (affinity or avidity) contribute to alter SCD neu adhesion. The objective of this study was to identify the integrins responsible for altered SCD neu adhesion. Neus were isolated from the peripheral blood of healthy controls and SCD individuals in steady state over ficoll-paque gradients. Cell adhesion (2×106cells/ml in RPMI) to cultured human umbilical vein endothelial cells (HUVEC) at confluence was assessed using static adhesion assays (30min, 37°C, 5%CO2). Neus from SCD patients demonstrated a significantly greater adhesion to HUVEC than control neus (20.2±2.8% compared to 11.2±1.0%; n≥7; p<0.03; Mann Whitney test). Subsequently, cells were co-incubated with adhesion molecule-blocking monoclonal antibodies (mAbs) during assays. Control neu adhesion to HUVEC was significantly inhibited by the anti-CD11b mAb (6.7±1.5%;n=6; P<0.05, paired t test), but not by mAbs against CD11a, the VLA-4-integrin subunit, CD49d, or a non-specific negative control mAb (neg control) (data not shown). In contrast, the adhesion of SCD neus to HUVEC was significantly inhibited by both the anti-CD11a and the anti-CD11b mAbs (20.2±2.8% reduced to 11.4±1.2% and 9.1±1.5%; n=9; P<0.01 and P<0.001, respect.). Interestingly, a mAb against CD49d was also found to significantly decrease SCD neu adhesion to HUVEC (10.4±1.1%; n=9; P<0.01), while the neg control mAb did not significantly affect SCD neu adhesion (data not shown). Following the stimulation of HUVEC with TNF-α (10 ng/ml) (3h, 37°C, 5%CO2) to simulate an endothelial layer under inflammatory conditions, the adhesions of control and SCD neus were increased but statistically similar (38.4±2.9% and 34.4±5.0%; n≥4, respect.). Under these conditions anti-CD11a and CD11b mAbs significantly inhibited control neu adhesion to HUVEC (reduced to 28.8±2.9% and 19.6±4.6%; n=4; P<0.01 and P<0.05, respect.). In contrast, SCD neu adhesion to HUVEC was significantly inhibited by mAbs for CD11a (19.5±2.6%; n=6; p<0.01) and CD11b (15.2±2.0%; n=6; p<0.001). The anti-CD49d, but not the neg control mAb, also significantly decreased SCD neu adhesion to TNF-α-stimulated HUVEC (19.5±3.7%; n=6; p<0.05). In conclusion, data indicate that control neu adhesion to endothelial cells appears mainly to be mediated by the Mac-1 (CD11b/18) integrin with a contribution from the LFA-1 integrin (CD11a/18) under inflammatory conditions. In contrast, SCD neu adhesion to endothelium (under both basal and stimulated conditions), at least in vitro, appears to be mediated by the Mac-1 and LFA-1 integrins and, interestingly, by VLA-4 (CD49d/CD29), an integrin found expressed at low levels on neus during certain inflammatory conditions. We speculate that alterations in the affinity/ avidity of these molecules contribute to SCD neu adhesion. Approaches to inhibit the adhesion of all three integrins may be important for preventing leukocyte adhesion to the vascular endothelium and, in turn, vaso-occlusion.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1540-1540 ◽  
Author(s):  
Latorya A Barber ◽  
Allison E Ashley-Koch ◽  
Melanie E. Garrett ◽  
Karen L Soldano ◽  
Marilyn J. Telen

Abstract Abstract 1540 Poster Board I-563 Tumor necrosis factor alpha (TNFα) is a pro-inflammatory cytokine that stimulates phagocytosis, neutrophil recruitment, and expression of adhesion molecule VCAM-1. Plasma levels of TNFα have been found to be increased in sickle cell disease (SCD), and in vitro studies show that TNFα causes increased adherence of sickle red blood cells to human umbilical vein endothelial cells. A polymorphism in the promoter region of the TNFα gene has previously been associated with stroke in children with SCD (Hoppe et al., 2007). The current study was designed to identify associations of additional TNFα single nucleotide polymorphisms (SNPs) with SCD clinical complications. We analyzed five SNPs in the TNFα gene in 509 DNA samples of SCD patients from Duke University, University of North Carolina at Chapel Hill, and Emory University. In our data set, cerebrovascular events (CVEs), including overt stroke, seizures, and transient ischemic attacks, occurred in 133 out of 509 SCD patients (26.1%). SNP genotyping was performed using Taqman genotyping assays from Applied Biosystems. Due to low minor allele frequencies (<0.05) for all the SNPs examined, genetic associations with SCD clinical complications were examined by using allele tests. After controlling for age, gender, and use of hydroxyurea, two of the five TNFα SNPs, rs2228088 and rs3093665, were significantly associated with CVEs (p=0.013 and 0.029, respectively). The odds that SCD patients with a G allele at rs2228088 suffered from CVEs were 0.485 times that for patients with the T allele, suggesting that the G allele had a protective effect. The odds of having the A allele at rs3093665 and suffering from CVEs was also reduced, at 0.45 compared to the C allele. Neither SNP was found to be in linkage disequilibrium (LD) with any of the other SNPs analyzed (r2≤0.002). There was also strong association of SNP rs2228088 with acute chest syndrome (ACS; p=0.003), occurring in 382 out of 509 SCD patients (75%). However, in this analysis, the G allele was associated with increased risk for ACS (OR=2.313). In addition to the association with CVEs, the SNP rs3093665 was also significantly associated with priapism (p=0.03), reported by 86 of 223 male SCD patients (38.6%). In this analysis, the A allele was protective, as had been observed for CVE (OR=0.188). Additionally, we found no difference in steady state plasma TNFα levels between genotypes for the two SNPs. The functional significance of these SNPs is presently unknown. SNP rs2228088 is a synonymous SNP located in the coding region, and rs3093665 is located in the 3' untranslated region of the TNFα gene. While the G to T change at SNP rs2228088 does not translate to a change in amino acid sequence, the A to C change at SNP rs3093665 may affect mRNA stability due to its location. It is also possible that one or both of these SNPs is in LD with another functionally relevant SNP. Our findings thus support previous data implicating TNFα polymorphisms in risk for central nervous system events. Interestingly, ACS has been previously associated with seizures, stroke and altered mental status in adults and children with SCD (Vinchinsky et al., 2000) and with silent cerebral infarcts and reversible posterior leukoencephalopathy syndrome in children with SCD (Henderson et al., 2003). However, in our dataset, ACS and the occurrence of CVEs were not associated (p=0.24). Further studies are required to elucidate these and other factors that potentially correlate with SCD clinical complications. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 21 (23) ◽  
pp. 8884
Author(s):  
Joanna Gemel ◽  
Yifan Mao ◽  
Gabrielle Lapping-Carr ◽  
Eric C. Beyer

Intercellular junctions maintain the integrity of the endothelium. We previously found that the adherens and tight junctions between endothelial cells are disrupted by plasma extracellular vesicles from patients with sickle cell disease (especially those with Acute Chest Syndrome). In the current study, we evaluated the effects of these vesicles on endothelial gap junctions. The vesicles from sickle cell patients (isolated during episodes of Acute Chest Syndrome) disrupted gap junction structures earlier and more severely than the other classes of intercellular junctions (as detected by immunofluorescence). These vesicles were much more potent than those isolated at baseline from the same subject. The treatment of endothelial cells with these vesicles led to reduced levels of connexin43 mRNA and protein. These vesicles severely reduced intercellular communication (transfer of microinjected Neurobiotin). Our data suggest a hierarchy of progressive disruption of different intercellular connections between endothelial cells by circulating extracellular vesicles that may contribute to the pathophysiology of the endothelial disturbances in sickle cell disease.


Blood ◽  
1996 ◽  
Vol 88 (12) ◽  
pp. 4701-4710 ◽  
Author(s):  
KR Bridges ◽  
GD Barabino ◽  
C Brugnara ◽  
MR Cho ◽  
GW Christoph ◽  
...  

During 24 weeks of hydroxyurea treatment, we monitored red blood cell (RBC) parameters in three patients with sickle cell disease, including F-cell and F-reticulocyte profiles, distributions of delay times for intracellular polymerization, sickle erythrocyte adherence to human umbilical vein endothelial cells in a laminar flow chamber, RBC phthalate density profiles, mean corpuscular hemoglobin concentration and cation content, reticulocyte mean corpuscular hemoglobin concentration, 1H-nuclear magnetic resonance transverse relaxation rates of packed RBCs, and plasma membrane lateral and rotational mobilities of band 3 and glycophorins. Hydroxyurea increases the fraction of cells with sufficiently long delay times to escape the microcirculation before polymerization begins. Furthermore, high pretreatment adherence to human umbilical vein endothelial cells of sickle RBCs decreased to normal after only 2 weeks of hydroxyurea treatment, preceding the increase in fetal hemoglobin levels. The lower adhesion of sickle RBCs to endothelium would facilitate escape from the microcirculation before polymerization begins. Hydroxyurea shifted several biochemical and biophysical parameters of sickle erythrocytes toward values observed with hemoglobin SC disease, suggesting that hydroxyurea moderates sickle cell disease toward the milder, but still clinically significant, hemoglobin SC disease. The 50% reduction in sickle crises documented in the Multicenter Study of Hydroxyurea in Sickle Cell Disease is consistent with this degree of erythrocyte improvement.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4829-4829
Author(s):  
Ersi Voskaridou ◽  
Mantzou Aimilia ◽  
Pagona Flevari ◽  
Maria Dimopoulou ◽  
Veroniki Komninaka ◽  
...  

Background: Vascular occlusion is a major cause of the morbidity associated with sickle-cell disease (SCD). The tendency of sickle red blood cells to adhere to the vascular endothelium is believed to be a major contributor and possibly primary cause of the vaso-occlusive process. Therefore mediators of adhesion have become a potential new target for pharmacological therapy to combat the complications of SCD. One of the molecules involved in this process is P-Selectin or CD62P, a cell adherence molecule that is rapidly and chronically expressed on the surface of endothelial cells and platelets when activated. P-Selectin is found in the plasma of normal individuals at ng/mL concentrations. Circulating soluble P-Selectin (sP-Selectin) appears to be slightly smaller than native P-Selectin. An alternatively spliced mRNA encoding a form of human P-Selectin lacking the transmembrane anchoring domain has been reported for both megakaryocytes and endothelial cells, and evidence suggests that the majority of circulating sP-Selectin arises in this manner. We and others have reported elevated sP-Selectin levels in SCD even in steady phase. Recently, a humanized monoclonal antibody that binds to P-Selectin and blocks its interaction with P-selectin glycoprotein ligand 1 (PSGL-1) has been administered to patients with SCD, resulting in an amelioration of painful VOC. In this context we aimed to explore if sP-Selectin levels could be used to choose among the SCD patients those who might benefit from the new therapy. Patients and Methods: Eighty adult Caucasian patients with HbS/βthal at steady phase [40 patients under hydroxyurea (HU+) treatment and 40 patients without hydroxyurea (HU-) treatment] were included in this study, while 20 apparently healthy individuals of similar age and gender served as controls. Along with sP-Selectin levels, measured with the same method as reported previously (Human sP-Selectin/CD62P Immunoassay, R&D Systems, Minneapolis, MN, USA), other parameters of hemolysis, inflammation, endothelial dysfunction, iron accumulation and clinical features of the disease were evaluated. Results are expressed as median values ± SEM. Results: We found that sP-Selectin levels were elevated in 45/80 (56%) patients with HbS/βthal compared to controls (108.2±6.3 vs. 69.3±4.1ng/mL, respectively, p<0.001), independently of patients' βthal genotype and correlated strongly with PLT count (r=0.760, p<0.001). Regarding HU treatment, sP-Selectin levels did not differ between (HU+) and (HU-) patients (112.5±9.8 vs. 100.3±7.4ng/mL, respectively, p>0.07). No significance correlation was found between sP-Selectin levels and markers of: hemolysis (RPI: r=0.191, p>0.100); LDH: r=0.103, p>0.360 and bilirubin: r=0.171, p>0.130); inflammation (hs-CRP: r= 0.002, p>0.842); endothelial dysfunction (vWF:antigen: r=0.141, p>0.210 and ADAMTS-13: r=0.089, p>0.507). Regarding iron accumulation no correlation was found between sP-Selectin and ferritin levels (r=0.090, p>0.438), while a weak negative correlation was found with hepcidin-25 levels (r=-0.283, p=0.018). Furthermore, no correlation was found between sP-Selectin levels and history of clinical complications such as VOC (p>0.795), acute chest syndrome, venous and arterial thrombosis and mean pulmonary artery pressure values, (p>0.402). Conclusion: In this study, we proceeded with an external validation procedure of sP-Selectin determination in patients with HbS/βthal (keeping the same methodology in a different cohort of patients), and we found elevated levels of sP-Selectin with the evidence of PLTs' secretion origin, as no correlation found with other markers of endothelial dysfunction and inflammation. Interestingly, we failed to find a significant link of sP-Selectin levels with other markers of disease severity and/or clinical features of SCD. Thus, we consider that the use sP-Selectin as a biomarker of assessment and treatment of endothelial dysfunction in patients with SCD is of almost negligible importance. Disclosures Voskaridou: Genesis: Consultancy, Research Funding; Protagonist: Research Funding; Celgene Corporation: Consultancy, Research Funding; Acceleron: Consultancy, Research Funding; Addmedica: Membership on an entity's Board of Directors or advisory committees.


Author(s):  
Soi Avgeridou ◽  
Ilija Djordjevic ◽  
Anton Sabashnikov ◽  
Kaveh Eghbalzadeh ◽  
Laura Suhr ◽  
...  

AbstractExtracorporeal membrane oxygenation (ECMO) plays an important role as a life-saving tool for patients with therapy-refractory cardio-respiratory failure. Especially, for rare and infrequent indications, scientific data is scarce. The conducted paper focuses primarily on our institutional experience with a 19-year-old patient suffering an acute chest syndrome, a pathognomonic pulmonary condition presented by patients with sickle cell disease. After implementation of awake ECMO therapy, the patient was successfully weaned off support and discharged home 22 days after initiation of the extracorporeal circulation. In addition to limited data and current literature, further and larger data sets are necessary to determine the outcome after ECMO therapy for this rare indication.


Toxins ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 157
Author(s):  
Joyce Gonzales ◽  
Trinad Chakraborty ◽  
Maritza Romero ◽  
Mobarak Abu Mraheil ◽  
Abdullah Kutlar ◽  
...  

Sickle cell disease (SCD) is one of the most common autosomal recessive disorders in the world. Due to functional asplenia, a dysfunctional antibody response, antibiotic drug resistance and poor response to immunization, SCD patients have impaired immunity. A leading cause of hospitalization and death in SCD patients is the acute chest syndrome (ACS). This complication is especially manifested upon infection of SCD patients with Streptococcus pneumoniae (Spn)—a facultative anaerobic Gram-positive bacterium that causes lower respiratory tract infections. Spn has developed increased rates of antibiotics resistance and is particularly virulent in SCD patients. The primary defense against Spn is the generation of reactive oxygen species (ROS) during the oxidative burst of neutrophils and macrophages. Paradoxically, Spn itself produces high levels of the ROS hydrogen peroxide (H2O2) as a virulence strategy. Apart from H2O2, Spn also secretes another virulence factor, i.e., the pore-forming exotoxin pneumolysin (PLY), a potent mediator of lung injury in patients with pneumonia in general and particularly in those with SCD. PLY is released early on in infection either by autolysis or bacterial lysis following the treatment with antibiotics and has a broad range of biological activities. This review will discuss recent findings on the role of pneumococci in ACS pathogenesis and on strategies to counteract the devastating effects of its virulence factors on the lungs in SCD patients.


2021 ◽  
pp. 1-5
Author(s):  
Justin E. Juskewitch ◽  
Craig D. Tauscher ◽  
Sheila K. Moldenhauer ◽  
Jennifer E. Schieber ◽  
Eapen K. Jacob ◽  
...  

Introduction: Patients with sickle cell disease (SCD) have repeated episodes of red blood cell (RBC) sickling and microvascular occlusion that manifest as pain crises, acute chest syndrome, and chronic hemolysis. These clinical sequelae usually increase during pregnancy. Given the racial distribution of SCD, patients with SCD are also more likely to have rarer RBC antigen genotypes than RBC donor populations. We present the management and clinical outcome of a 21-year-old pregnant woman with SCD and an RHD*39 (RhD[S103P], G-negative) variant. Case Presentation: Ms. S is B positive with a reported history of anti-D, anti-C, and anti-E alloantibodies (anti-G testing unknown). Genetic testing revealed both an RHD*39 and homozygous partial RHCE*ceVS.02 genotype. Absorption/elution testing confirmed the presence of anti-G, anti-C, and anti-E alloantibodies but could not definitively determine the presence/absence of an anti-D alloantibody. Ms. S desired to undergo elective pregnancy termination and the need for postprocedural RhD immunoglobulin (RhIG) was posed. Given that only the G antigen site is changed in an RHD*39 genotype and the potential risk of RhIG triggering a hyperhemolytic episode in an SCD patient, RhIG was not administered. There were no procedural complications. Follow-up testing at 10 weeks showed no increase in RBC alloantibody strength. Discussion/Conclusion: Ms. S represents a rare RHD*39 and partial RHCE*ceVS.02 genotype which did not further alloimmunize in the absence of RhIG administration. Her case also highlights the importance of routine anti-G alloantibody testing in women of childbearing age with apparent anti-D and anti-C alloantibodies.


1995 ◽  
Vol 62 (2) ◽  
pp. 201-205 ◽  
Author(s):  
H. A. Srair ◽  
J. A. Owa ◽  
H. A. Aman ◽  
M. A. Madan

2008 ◽  
Vol 6 (3) ◽  
pp. 220-223 ◽  
Author(s):  
B. Diarra ◽  
J. Roudié ◽  
A. Coulibaly ◽  
F. Ehua Somian ◽  
J.-B. Kanga-Miessan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document