scholarly journals The Role of Immune Checkpoint Molecules for Relapse After Allogeneic Hematopoietic Cell Transplantation

2021 ◽  
Vol 12 ◽  
Author(s):  
Natalie Köhler ◽  
Dietrich Alexander Ruess ◽  
Rebecca Kesselring ◽  
Robert Zeiser

Immune checkpoint molecules represent physiological brakes of the immune system that are essential for the maintenance of immune homeostasis and prevention of autoimmunity. By inhibiting these negative regulators of the immune response, immune checkpoint blockade can increase anti-tumor immunity, but has been primarily successful in solid cancer therapy and Hodgkin lymphoma so far. Allogeneic hematopoietic cell transplantation (allo-HCT) is a well-established cellular immunotherapy option with the potential to cure hematological cancers, but relapse remains a major obstacle. Relapse after allo-HCT is mainly thought to be attributable to loss of the graft-versus-leukemia (GVL) effect and hence escape of tumor cells from the allogeneic immune response. One potential mechanism of immune escape from the GVL effect is the inhibition of allogeneic T cells via engagement of inhibitory receptors on their surface including PD-1, CTLA-4, TIM3, and others. This review provides an overview of current evidence for a role of immune checkpoint molecules for relapse and its treatment after allo-HCT, as well as discussion of the immune mediated side effect graft-vs.-host disease. We discuss the expression of different immune checkpoint molecules on leukemia cells and T cells in patients undergoing allo-HCT. Furthermore, we review mechanistic insights gained from preclinical studies and summarize clinical trials assessing immune checkpoint blockade for relapse after allo-HCT.

2011 ◽  
Vol 208 (5) ◽  
pp. 1069-1082 ◽  
Author(s):  
Daigo Hashimoto ◽  
Andrew Chow ◽  
Melanie Greter ◽  
Yvonne Saenger ◽  
Wing-Hong Kwan ◽  
...  

Acute graft-versus-host disease (GVHD) results from the attack of host tissues by donor allogeneic T cells and is the most serious limitation of allogeneic hematopoietic cell transplantation (allo-HCT). Host antigen-presenting cells are thought to control the priming of alloreactive T cells and the induction of acute GVHD after allo-HCT. However, whereas the role of host DC in GVHD has been established, the contribution of host macrophages to GVHD has not been clearly addressed. We show that, in contrast to DC, reducing of the host macrophage pool in recipient mice increased donor T cell expansion and aggravated GVHD mortality after allo-HCT. We also show that host macrophages that persist after allo-HCT engulf donor allogeneic T cells and inhibit their proliferation. Conversely, administration of the cytokine CSF-1 before transplant expanded the host macrophage pool, reduced donor T cell expansion, and improved GVHD morbidity and mortality after allo-HCT. This study establishes the unexpected key role of host macrophages in inhibiting GVHD and identifies CSF-1 as a potential prophylactic therapy to limit acute GVHD after allo-HCT in the clinic.


2021 ◽  
Vol 10 ◽  
Author(s):  
Hana Andrlová ◽  
Marcel R. M. van den Brink ◽  
Kate A. Markey

Allogeneic hematopoietic cell transplantation (allo-HCT) is performed as curative-intent therapy for hematologic malignancies and non-malignant hematologic, immunological and metabolic disorders, however, its broader implementation is limited by high rates of transplantation-related complications and a 2-year mortality that approaches 50%. Robust reconstitution of a functioning innate and adaptive immune system is a critical contributor to good long-term patient outcomes, primarily to prevent and overcome post-transplantation infectious complications and ensure adequate graft-versus-leukemia effects. There is increasing evidence that unconventional T cells may have an important immunomodulatory role after allo-HCT, which may be at least partially dependent on the post-transplantation intestinal microbiome. Here we discuss the role of immune reconstitution in allo-HCT outcome, focusing on unconventional T cells, specifically mucosal-associated invariant T (MAIT) cells, γδ (gd) T cells, and invariant NK T (iNKT) cells. We provide an overview of the mechanistic preclinical and associative clinical studies that have been performed. We also discuss the emerging role of the intestinal microbiome with regard to hematopoietic function and overall immune reconstitution.


Author(s):  
Derek J Hanson ◽  
Hu Xie ◽  
Danielle M Zerr ◽  
Wendy M Leisenring ◽  
Keith R Jerome ◽  
...  

Abstract We sought to determine whether donor-derived human herpesvirus (HHV) 6B–specific CD4+ T-cell abundance is correlated with HHV-6B detection after allogeneic hematopoietic cell transplantation. We identified 33 patients who received HLA-matched, non–T-cell–depleted, myeloablative allogeneic hematopoietic cell transplantation and underwent weekly plasma polymerase chain reaction testing for HHV-6B for 100 days thereafter. We tested donor peripheral blood mononuclear cells for HHV-6B–specific CD4+ T cells. Patients with HHV-6B detection above the median peak viral load (200 copies/mL) received approximately 10-fold fewer donor-derived total or HHV-6B–specific CD4+ T cells than those with peak HHV-6B detection at ≤200 copies/mL or with no HHV-6B detection. These data suggest the importance of donor-derived immunity for controlling HHV-6B reactivation.


2006 ◽  
Vol 193 (12) ◽  
pp. 1619-1625 ◽  
Author(s):  
Veronique Erard ◽  
Jason W. Chien ◽  
Hyung W. Kim ◽  
W. Garrett Nichols ◽  
Mary E. Flowers ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4616-4616
Author(s):  
Yi Wang ◽  
Hui Wang ◽  
Shumei Wang ◽  
Megan Sykes ◽  
Yong-Guang Yang

Abstract NKT cells from naïve mice are mainly CD4+ or CD4−CD8−. However, it has been reported that CD8+ NKT cells can be expanded in vitro from splenocytes, bone marrow cells and thymocytes of C57BL/6 (B6) mice by stimulation with anti-CD3 mAb and cytokines, and that the expanded CD8+ NKT cells mediate strong graft-vs.-leukemic (GVL) effects without severe GVHD after adoptive transfer into allogeneic mice. We now describe the presence of CD8+NK1.1+ cells in recipient livers (approximately 2–6%), but not in other tissues (spleen, lung, bone marrow, thymus and PBMC), in various allogeneic hematopoietic cell transplantation (allo-HCT) models. The generation of CD8+NK1.1+ cells is likely a consequence of alloresponses, as these cells were not detected in the liver of syngeneic HCT controls. Flow cytometric analysis confirmed that these cells are CD1d-independent, TCRαβ+ T cells with a memory phenotype (CD44+ and CD62L−), and do not express CD49b, Ly-49C/I, Ly-49G2, or Ly-49D. In a sublethally (6 Gy)-irradiated B6-to-B6D2F1 allo-HCT model, NK1.1+ CD8 T cells became detectable by week 2, increased in number until approximately week 8, and gradually declined thereafter but were still detectable in the liver at day 100 after allo-HCT. By using CD45.1 and CD45.2 congeneic donors, we determined that the majority of NK1.1+ CD8 T cells were derived from the donor splenocytes. Furthermore, depletion of CD8+, but not NK1.1+, cells from the donor splenocytes prior to transplantation prevented the generation of NK1.1+ CD8 T cells, indicating that these cells were derived from donor NK1.1−CD8+ splenic T cells. Our data demonstrate that donor CD8 T cells can acquire NK1.1 expression upon activation in allo-HCT recipients, and that these NK1.1+ CD8 T cells maintain a memory phenotype and persist in the recipients with preferential accumulation in the liver. Studies are currently in progress to determine the role of activated donor NK1.1+ CD8 T cells in GVHD and GVL effects.


Sign in / Sign up

Export Citation Format

Share Document