scholarly journals Personalised Profiling of Innate Immune Memory Induced by Nano-Imaging Particles in Human Monocytes

2021 ◽  
Vol 12 ◽  
Author(s):  
Giacomo Della Camera ◽  
Mariusz Madej ◽  
Anna Maria Ferretti ◽  
Rita La Spina ◽  
Yang Li ◽  
...  

Engineered nanoparticles used for medical purposes must meet stringent safety criteria, which include immunosafety, i.e., the inability to activate possibly detrimental immune/inflammatory effects. Even medical nanomaterials devoid of direct immunotoxic or inflammatory effects may have an impact on human health if able to modify innate memory, which is the ability to “prime” future immune responses towards a different, possibly more detrimental reactivity. Although innate memory is usually protective, anomalous innate memory responses may be at the basis of immune pathologies. In this study, we have examined the ability of two nanomaterials commonly used for diagnostic imaging purposes, gold and iron oxide nanoparticles, to induce or modulate innate memory, using an in vitro model based on human primary monocytes. Monocytes were exposed in culture to nanoparticles alone or together with the bacterial agent LPS (priming phase/primary response), then rested for six days (extinction phase), and eventually challenged with LPS (memory/secondary response). The memory response to the LPS challenge was measured as changes in the production of inflammatory (TNFα, IL-6) and anti-inflammatory cytokines (IL-10, IL-1Ra), as compared to unprimed monocytes. The results show that both types of nanoparticles can have an effect in the induction of memory, with changes observed in the cytokine production. By comparing nanomaterials of different shapes (spherical vs. rod-shaped gold particles) and different size (17 vs. 22 nm diameter spherical iron oxide particles), it was evident that innate memory could be differentially induced and modulated depending on size, shape and chemical composition. However, the main finding was that the innate memory effect of the particles was strongly donor-dependent, with monocytes from each donor showing a distinct memory profile upon priming with the same particles, thereby making impossible to draw general conclusions on the particle effects. Thus, in order to predict the effect of imaging nanoparticles on the innate memory of patients, a personalised profiling would be required, able to take in consideration the peculiarities of the individual innate immune reactivity.

Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 284 ◽  
Author(s):  
Benjamin J. Swartzwelter ◽  
Francesco Barbero ◽  
Alessandro Verde ◽  
Maria Mangini ◽  
Marinella Pirozzi ◽  
...  

Innate immune memory is characterized by a modulation in the magnitude with which innate immune cells such as monocytes and macrophages respond to potential dangers, subsequent to previous exposure to the same or unrelated agents. In this study, we have examined the capacity of gold nanoparticles (AuNP), which are already in use for therapeutic and diagnostic purposes, to modulate the innate memory induced by bacterial agents. The induction of innate memory was achieved in vitro by exposing human primary monocytes to bacterial agents (lipopolysaccharide -LPS-, or live Bacille Calmette-Guérin -BCG) in the absence or presence of AuNP. After the primary activation, cells were allowed to return to a resting condition, and eventually re-challenged with LPS. The induction of memory was assessed by comparing the response to the LPS challenge of unprimed cells with that of cells primed with bacterial agents and AuNP. The response to LPS was measured as the production of inflammatory (TNFα, IL-6) and anti-inflammatory cytokines (IL-10, IL-1Ra). While ineffective in directly inducing innate memory per se, and unable to influence LPS-induced tolerance memory, AuNP significantly affected the memory response of BCG-primed cells, by inhibiting the secondary response in terms of both inflammatory and anti-inflammatory factor production. The reprogramming of BCG-induced memory towards a tolerance type of reactivity may open promising perspectives for the use of AuNP in immunomodulatory approaches to autoimmune and chronic inflammatory diseases.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Yang Heng ◽  
Xiaoming Zhang ◽  
Malte Borggrewe ◽  
Hilmar R. J. van Weering ◽  
Maaike L. Brummer ◽  
...  

Abstract Background An innate immune memory response can manifest in two ways: immune training and immune tolerance, which refers to an enhanced or suppressed immune response to a second challenge, respectively. Exposing monocytes to moderate-to-high amounts of bacterial lipopolysaccharide (LPS) induces immune tolerance, whereas fungal β-glucan (BG) induces immune training. In microglia, it has been shown that different LPS inocula in vivo can induce either immune training or tolerance. Few studies focused on impact of BG on microglia and were only performed in vitro. The aim of the current study was to determine whether BG activates and induces immune memory in microglia upon peripheral administration in vivo. Methods Two experimental designs were used. In the acute design, mice received an intraperitoneal (i.p.) injection with PBS, 1 mg/kg LPS or 20 mg/kg BG and were terminated after 3 h, 1 or 2 days. In the preconditioning design, animals were first challenged i.p. with PBS, 1 mg/kg LPS or 20 mg/kg BG. After 2, 7 or 14 days, mice received a second injection with PBS or 1 mg/kg LPS and were sacrificed 3 h later. Microglia were isolated by fluorescence-activated cell sorting, and cytokine gene expression levels were determined. In addition, a self-developed program was used to analyze microglia morphological changes. Cytokine concentrations in serum were determined by a cytokine array. Results Microglia exhibited a classical inflammatory response to LPS, showing significant upregulation of Tnf, Il6, Il1β, Ccl2, Ccl3 and Csf1 expression, three h after injection, and obvious morphological changes 1 and 2 days after injection. With an interval of 2 days between two challenges, both BG and LPS induced immune training in microglia. The training effect of LPS changed into immune tolerance after a 7-day interval between 2 LPS challenges. Preconditioning with BG and LPS resulted in increased morphological changes in microglia in response to a systemic LPS challenge compared to naïve microglia. Conclusions Our results demonstrate that preconditioning with BG and LPS both induced immune training of microglia at two days after the first challenge. However, with an interval of 7 days between the first and second challenge, LPS-preconditioning resulted in immune tolerance in microglia.


2020 ◽  
Author(s):  
Yang Heng ◽  
Xiaoming Zhang ◽  
Malte Borggrewe ◽  
Hilmar R.J. van Weering ◽  
Maaike L. Brummer ◽  
...  

Abstract BackgroundAn innate immune memory response can manifest in two ways: immune training and immune tolerance, which refers to an enhanced or suppressed immune response to a second challenge, respectively. Exposing monocytes to moderate-to-high amounts of bacterial lipopolysaccharide (LPS) induces immune tolerance, whereas fungal β-glucan (BG) induces immune training. In microglia, it has been shown that different LPS inocula in vivo can induce either immune training or tolerance. Few studies focused on impact of BG on microglia and were only performed in vitro. The aim of the current study was to determine whether BG activates and induces immune memory in microglia upon peripheral administration in vivo.MethodsTwo experimental designs were used. In the acute design, mice received an intraperitoneal (i.p.) injection with PBS, 1 mg/kg LPS or 20 mg/kg BG and were terminated after 3 h, 1 or 2 days. In the preconditioning design, animals were first challenged i.p. with PBS, 1 mg/kg LPS or 20 mg/kg BG. After 2, 7 or 14 days, mice received a second injection with PBS or 1 mg/kg LPS and were sacrificed 3 h later. Microglia were isolated by fluorescence-activated cell sorting, and cytokine gene expression levels were determined. In addition, a self-developed program was used to analyze microglia morphological changes. Cytokine concentrations in serum were determined by a cytokine array.ResultsMicroglia exhibited a classical inflammatory response to LPS, showing significant upregulation of Tnf, Il6, Il1β, Ccl2, Ccl3 and Csf1 expression, three h after injection, and obvious morphological changes 1 and 2 days after injection. With an interval of 2 days between two challenges, both BG and LPS induced immune training in microglia. The training effect of LPS changed into immune tolerance after a 7-day interval between 2 LPS challenges. Preconditioning with BG and LPS resulted in increased morphological changes in microglia in response to a systemic LPS challenge compared to naïve microglia.ConclusionsOur results demonstrate that preconditioning with BG and LPS both induced immune training of microglia at two days after the first challenge. However, with an interval of 7 days between the first and second challenge, LPS-preconditioning resulted in immune tolerance in microglia.


2011 ◽  
Vol 300 (3) ◽  
pp. L462-L471 ◽  
Author(s):  
Kinjal Maniar-Hew ◽  
Edward M. Postlethwait ◽  
Michelle V. Fanucchi ◽  
Carol A. Ballinger ◽  
Michael J. Evans ◽  
...  

Early life is a dynamic period of growth for the lung and immune system. We hypothesized that ambient ozone exposure during postnatal development can affect the innate immune response to other environmental challenges in a persistent fashion. To test this hypothesis, we exposed infant rhesus macaque monkeys to a regimen of 11 ozone cycles between 30 days and 6 mo of age; each cycle consisted of ozone for 5 days (0.5 parts per million at 8 h/day) followed by 9 days of filtered air. Animals were subsequently housed in filtered air conditions and challenged with a single dose of inhaled LPS at 1 yr of age. After completion of the ozone exposure regimen at 6 mo of age, total peripheral blood leukocyte and polymorphonuclear leukocyte (PMN) numbers were reduced, whereas eosinophil counts increased. In lavage, total cell numbers at 6 mo were not affected by ozone, however, there was a significant reduction in lymphocytes and increased eosinophils. Following an additional 6 mo of filtered air housing, only monocytes were increased in blood and lavage in previously exposed animals. In response to LPS challenge, animals with a prior history of ozone showed an attenuated peripheral blood and lavage PMN response compared with controls. In vitro stimulation of peripheral blood mononuclear cells with LPS resulted in reduced secretion of IL-6 and IL-8 protein in association with prior ozone exposure. Collectively, our findings suggest that ozone exposure during infancy can result in a persistent effect on both pulmonary and systemic innate immune responses later in life.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Liang Ma ◽  
Ming-wei Li ◽  
Yu Bai ◽  
Hui-hui Guo ◽  
Sheng-chao Wang ◽  
...  

Tracking transplanted stem cells is necessary to clarify cellular properties and improve transplantation success. In this study, we investigate the effects of fluorescent superparamagnetic iron oxide particles (SPIO) (Molday ION Rhodamine-B™, MIRB) on biological properties of human dental pulp stem cells (hDPSCs) and monitor hDPSCs in vitro and in vivo using magnetic resonance imaging (MRI). Morphological analysis showed that intracellular MIRB particles were distributed in the cytoplasm surrounding the nuclei of hDPSCs. 12.5–100 μg/mL MIRB all resulted in 100% labeling efficiency. MTT showed that 12.5–50 μg/mL MIRB could promote cell proliferation and MIRB over 100 μg/mL exhibited toxic effect on hDPSCs. In vitro MRI showed that 1 × 106cells labeled with various concentrations of MIRB (12.5–100 μg/mL) could be visualized. In vivo MRI showed that transplanted cells could be clearly visualized up to 60 days after transplantation. These results suggest that 12.5–50 μg/mL MIRB is a safe range for labeling hDPSCs. MIRB labeled hDPSCs cell can be visualized by MRI in vitro and in vivo. These data demonstrate that MIRB is a promising candidate for hDPSCs tracking in hDPSCs based dental pulp regeneration therapy.


2021 ◽  
Author(s):  
Alícia C. Piffer ◽  
Giorgio Camilli ◽  
Mathieu Bohm ◽  
Rachel Lavenir ◽  
Jessica Quintin

AbstractAdvances in the field of immunological memory demonstrate that innate immune cells can recall a previous encounter – the innate immune memory. In vitro, exposure of human primary monocytes to the fungal ²-glucan enhances their pro-inflammatory responsiveness towards several pathogens. During infection, circulating monocytes infiltrate tissues where, following conditioning by local environment, they differentiate and polarise into different types of macrophages. Hence in vivo interaction of β-glucan with innate cells would occur in a complex environment. Understanding the potential of β-glucan to induce innate immune memory in complex physiological environments is crucial for future translational research.Recapitulating different physiological conditions in vitro we found that β-glucan imprinting does not always enhance responsiveness and function of macrophages but can also reduce it. In this study, we show that upon both GM-CSF- and M-CSF-mediated polarisation, imprinting by β-glucan leads to less differentiated macrophages with a convergent functional phenotype. Altogether, these observations provide insightful and crucial knowledge that will help apprehending the in vivo high potential of β-glucan-induced innate memory in different pathological contexts.


1981 ◽  
Vol 154 (5) ◽  
pp. 1652-1670 ◽  
Author(s):  
LH Glimcher ◽  
DL Longo ◽  
I Green ◽  
RH Schwartz

A system has been described that produces a murine syngeneic mixed lymphocyte response (MLR) comparable in magnitude to an allogeneic MLR. The responder cells in these cultures exhibit the classic immunologic characteristics of both memory and specificity. Studies using radiation-induced bone marrow chimeras of F(1) {arrow} parent type indicated that, similar to many other T cell-mediated immune responses, the response of the T lymphocytes in the syngeneic MLR was major histocompatibility complex-restricted and was determined by the environment in which the T cells matured. Using responder T cells from F(1) {arrow} parent chimeras and stimulator cells from H-2 recombinant strains, it was possible to map the genes involved in the stimulation to the K and/or I regions. In addition, blocking studies with monoclonal anti-Ia antibodies suggested that in the B10.A strain the critical molecules were products of both the I-A(k) and I-E(k) subregions. The issue of whether the syngeneic MLR is directed solely at self I-region antigens or whether the response represents proliferation to an unknown antigen in association with self I-region determinants was also addressed. Secondary syngeneic MLR were successfully performed in normal mouse serum and with stimulator cells prepared in the absence of bovine serum albumin to rule out the possibility that xenogeneic serum antigens were involved in the stimulation. The possibility that the syngeneic MLR might represent a secondary response to environmental antigens was eliminated by using germ- free mice as a source of stimulator cells and by demonstrating that spleen cells from unimmunized, fully allogeneic chimeras (B10.A {arrow} B10) could generate a normal syngeneic MLR even though such chimeras could not be primed to respond to any foreign antigens unless supplemented in vivo with a source of antigen-presenting cells syngeneic to the B10 host. The possibility that the syngeneic MLR was a primary response to a foreign antigen was considered unlikely because by using our culture conditions we could not obtain a primary antigen response or a secondary antigen response after in vitro priming to a variety of potent foreign antigens. Finally, the possibility that the syngeneic MLR represents a response to a variety of minor histocompatibility self antigens in association with self Ia molecules was eliminated by showing that the secondary responses to H-2 compatible, non-H-2 different strain (A/J vs. B10.A and C3H, or BALB/c vs. B10.D2 and DBA/2) were comparable to the secondary responses to syngeneic stimulators. Thus, we conclude that the target antigens in the syngeneic MLR are solely determinants on self Ia molecules, although the functionally equivalent possibility of a single, nonpolymorphic, minor self antigen seen in association with self Ia molecules cannot be excluded.


1971 ◽  
Vol 133 (4) ◽  
pp. 846-856 ◽  
Author(s):  
Gordon N. Radcliffe ◽  
Michael A. Axelrad

The immune responses to sheep erythrocytes of mouse spleen cell suspensions from immune and nonimmune donors were compared in vitro. In vivo immunity was only transiently reflected in vitro, and 8 wk after in vivo immunization the responses of cultures from immunized and nonimmunized mice were virtually identical. There appeared to be two mechanisms for an antibody response to sheep erythrocytes. The first was responsible for the early primary response and is unmodified in the immune animal though contributing little to subsequent in vivo responses due to its suppressibility by specific antibody. The second was expressed in the in vivo secondary response but not on in vitro challenge of spleen cells from mice immunized many weeks previously; spleen cell cultures from such immune mice, freed from the antibody of the in vivo environment, once again demonstrate a pure primary-type response.


1975 ◽  
Vol 142 (3) ◽  
pp. 622-636 ◽  
Author(s):  
H R MacDonald ◽  
B Sordat ◽  
J C Cerottini ◽  
K T Brunner

Re-exposure of day 14 mixed leukocyte culture (MLC) cells to the original stimulating alloantigens (secondary response) has previously been shown to result in significant proliferation and in rapid reappearance of high levels of cytolytic T-lymphocyte (CTL) activity within the next 4 days. Moreover, evidence has been presented that CTL precursor cells in day 14 MLC populations, while they derived from cells were large at peak of the primary response (day 4) were themselves small lymphocytes which developed into large CTL after restimulation. In this study, inhibition of DNA synthesis by cytosine arabinoside (ARA-C) was used to investigate whether CTL formation could be dissociated from proliferation during the secondary response. It was found that within the first 24 h after restimulation (a) CTL activity increased 6-to-20-fold, (b) 60-70% of the small T lymphocytes became medium- to large-sized cells, and (c) both events were independent of DNA synthesis. By using two successive cell separations by velocity sedimentation at unit gravity, before and after stimulation of day 14 MLC cells for 24 h in the presence or absence of ARA-C, direct evidence was obtained that small CTL precursor cells developed into large CTL, irrespective of DNA synthesis. The presence of ARA-C for periods longer than 24 h inhibited any further increase in CTL activity, in contrast to a parallel increase in lytic activity and cell number from day 1 to day 4 in control restimulated cultures. Taken together with the finding that 90% of the medium- and large-sized lymphoid cells in control restimulated cultures underwent DNA synthesis within 24 h, these results thus suggest that during a secondary MLC response there is initially a differentiation step leading to the formation of CTL which, although it can be clearly dissociated from DNA synthesis, is under normal conditions followed by proliferation of these effector cells.


Sign in / Sign up

Export Citation Format

Share Document