scholarly journals Machine Learning Applications in Solid Organ Transplantation and Related Complications

2021 ◽  
Vol 12 ◽  
Author(s):  
Jeremy A. Balch ◽  
Daniel Delitto ◽  
Patrick J. Tighe ◽  
Ali Zarrinpar ◽  
Philip A. Efron ◽  
...  

The complexity of transplant medicine pushes the boundaries of innate, human reasoning. From networks of immune modulators to dynamic pharmacokinetics to variable postoperative graft survival to equitable allocation of scarce organs, machine learning promises to inform clinical decision making by deciphering prodigious amounts of available data. This paper reviews current research describing how algorithms have the potential to augment clinical practice in solid organ transplantation. We provide a general introduction to different machine learning techniques, describing their strengths, limitations, and barriers to clinical implementation. We summarize emerging evidence that recent advances that allow machine learning algorithms to predict acute post-surgical and long-term outcomes, classify biopsy and radiographic data, augment pharmacologic decision making, and accurately represent the complexity of host immune response. Yet, many of these applications exist in pre-clinical form only, supported primarily by evidence of single-center, retrospective studies. Prospective investigation of these technologies has the potential to unlock the potential of machine learning to augment solid organ transplantation clinical care and health care delivery systems.

2021 ◽  
pp. 096032712199191
Author(s):  
B Behnoush ◽  
E Bazmi ◽  
SH Nazari ◽  
S Khodakarim ◽  
MA Looha ◽  
...  

Introduction: This study was designed to develop and evaluate machine learning algorithms for predicting seizure due to acute tramadol poisoning, identifying high-risk patients and facilitating appropriate clinical decision-making. Methods: Several characteristics of acute tramadol poisoning cases were collected in the Emergency Department (ED) (2013–2019). After selecting important variables in random forest method, prediction models were developed using the Support Vector Machine (SVM), Naïve Bayes (NB), Artificial Neural Network (ANN) and K-Nearest Neighbor (K-NN) algorithms. Area Under the Curve (AUC) and other diagnostic criteria were used to assess performance of models. Results: In 909 patients, 544 (59.8%) experienced seizures. The important predictors of seizure were sex, pulse rate, arterial blood oxygen pressure, blood bicarbonate level and pH. SVM (AUC = 0.68), NB (AUC = 0.71) and ANN (AUC = 0.70) models outperformed k-NN model (AUC = 0.58). NB model had a higher sensitivity and negative predictive value and k-NN model had higher specificity and positive predictive values than other models. Conclusion: A perfect prediction model may help improve clinicians’ decision-making and clinical care at EDs in hospitals and medical settings. SVM, ANN and NB models had no significant differences in the performance and accuracy; however, validated logistic regression (LR) was the superior model for predicting seizure due to acute tramadol poisoning.


2021 ◽  
Author(s):  
Matthew Nagy ◽  
Nathan Radakovich ◽  
Aziz Nazha

UNSTRUCTURED The rapid development of machine learning (ML) applications in healthcare promises to transform the landscape of healthcare. In order for ML advancements to be effectively utilized in clinical care, it is necessary for the medical workforce to be prepared to handle these changes. As physicians in training are exposed to a wide breadth of clinical tools during medical school, this offers an ideal opportunity to introduce ML concepts. A foundational understanding of ML will not only be practically useful for clinicians, but will also address ethical concerns for clinical decision making. While select medical schools have made effort to integrate ML didactics and practice into their curriculum, we argue that foundational ML principles should be taught to broadly to medical students across the country.


2021 ◽  
Vol 29 (Supplement_1) ◽  
pp. i18-i18
Author(s):  
N Hassan ◽  
R Slight ◽  
D Weiand ◽  
A Vellinga ◽  
G Morgan ◽  
...  

Abstract Introduction Sepsis is a life-threatening condition that is associated with increased mortality. Artificial intelligence tools can inform clinical decision making by flagging patients who may be at risk of developing infection and subsequent sepsis and assist clinicians with their care management. Aim To identify the optimal set of predictors used to train machine learning algorithms to predict the likelihood of an infection and subsequent sepsis and inform clinical decision making. Methods This systematic review was registered in PROSPERO database (CRD42020158685). We searched 3 large databases: Medline, Cumulative Index of Nursing and Allied Health Literature, and Embase, using appropriate search terms. We included quantitative primary research studies that focused on sepsis prediction associated with bacterial infection in adult population (>18 years) in all care settings, which included data on predictors to develop machine learning algorithms. The timeframe of the search was 1st January 2000 till the 25th November 2019. Data extraction was performed using a data extraction sheet, and a narrative synthesis of eligible studies was undertaken. Narrative analysis was used to arrange the data into key areas, and compare and contrast between the content of included studies. Quality assessment was performed using Newcastle-Ottawa Quality Assessment scale, which was used to evaluate the quality of non-randomized studies. Bias was not assessed due to the non-randomised nature of the included studies. Results Fifteen articles met our inclusion criteria (Figure 1). We identified 194 predictors that were used to train machine learning algorithms to predict infection and subsequent sepsis, with 13 predictors used on average across all included studies. The most significant predictors included age, gender, smoking, alcohol intake, heart rate, blood pressure, lactate level, cardiovascular disease, endocrine disease, cancer, chronic kidney disease (eGFR<60ml/min), white blood cell count, liver dysfunction, surgical approach (open or minimally invasive), and pre-operative haematocrit < 30%. These predictors were used for the development of all the algorithms in the fifteen articles. All included studies used artificial intelligence techniques to predict the likelihood of sepsis, with average sensitivity 77.5±19.27, and average specificity 69.45±21.25. Conclusion The type of predictors used were found to influence the predictive power and predictive timeframe of the developed machine learning algorithm. Two strengths of our review were that we included studies published since the first definition of sepsis was published in 2001, and identified factors that can improve the predictive ability of algorithms. However, we note that the included studies had some limitations, with three studies not validating the models that they developed, and many tools limited by either their reduced specificity or sensitivity or both. This work has important implications for practice, as predicting the likelihood of sepsis can help inform the management of patients and concentrate finite resources to those patients who are most at risk. Producing a set of predictors can also guide future studies in developing more sensitive and specific algorithms with increased predictive time window to allow for preventive clinical measures.


2020 ◽  
Vol 37 (4) ◽  
pp. 659-686 ◽  
Author(s):  
Shashidhar Kaparthi ◽  
Daniel Bumblauskas

PurposeThe after-sale service industry is estimated to contribute over 8 percent to the US GDP. For use in this considerably large service management industry, this article provides verification in the application of decision tree-based machine learning algorithms for optimal maintenance decision-making. The motivation for this research arose from discussions held with a large agricultural equipment manufacturing company interested in increasing the uptime of their expensive machinery and in helping their dealer network.Design/methodology/approachWe propose a general strategy for the design of predictive maintenance systems using machine learning techniques. Then, we present a case study where multiple machine learning algorithms are applied to a particular example situation for an illustration of the proposed strategy and evaluation of its performance.FindingsWe found progressive improvements using such machine learning techniques in terms of accuracy in predictions of failure, demonstrating that the proposed strategy is successful.Research limitations/implicationsThis approach is scalable to a wide variety of applications to aid in failure prediction. These approaches are generalizable to many systems irrespective of the underlying physics. Even though we focus on decision tree-based machine learning techniques in this study, the general design strategy proposed can be used with all other supervised learning techniques like neural networks, boosting algorithms, support vector machines, and statistical methods.Practical implicationsThis approach is applicable to many different types of systems that require maintenance and repair decision-making. A case is provided for a cloud data storage provider. The methods described in the case can be used in any number of systems and industrial applications, making this a very scalable case for industry practitioners. This scalability is possible as the machine learning techniques learn the correspondence between machine conditions and outcome state irrespective of the underlying physics governing the systems.Social implicationsSustainable systems and operations require allocating and utilizing resources efficiently and effectively. This approach can help asset managers decide how to sustainably allocate resources by increasing uptime and utilization for expensive equipment.Originality/valueThis is a novel application and case study for decision tree-based machine learning that will aid researchers in developing tools and techniques in this area as well as those working in the artificial intelligence and service management space.


2018 ◽  
Vol 1 (26) ◽  
pp. 461-474
Author(s):  
Hussein Altabrawee

Banks process their financial data by machine learning techniques to get knowledge from the data and use that knowledge in decision making and risk management. In this research, fourteen classification models have been built and trained using a real financial data from a bank in Taiwan. The models forecast the credit card default of a customer which is the repayment delay of the credit granted to the customer. The main idea of the research is evaluating and comparing the models based on their predictive average class accuracy


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Huimin Wang ◽  
Jianxiang Tang ◽  
Mengyao Wu ◽  
Xiaoyu Wang ◽  
Tao Zhang

Abstract Background There are often many missing values in medical data, which directly affect the accuracy of clinical decision making. Discharge assessment is an important part of clinical decision making. Taking the discharge assessment of patients with spontaneous supratentorial intracerebral hemorrhage as an example, this study adopted the missing data processing evaluation criteria more suitable for clinical decision making, aiming at systematically exploring the performance and applicability of single machine learning algorithms and ensemble learning (EL) under different data missing scenarios, as well as whether they had more advantages than traditional methods, so as to provide basis and reference for the selection of suitable missing data processing method in practical clinical decision making. Methods The whole process consisted of four main steps: (1) Based on the original complete data set, missing data was generated by simulation under different missing scenarios (missing mechanisms, missing proportions and ratios of missing proportions of each group). (2) Machine learning and traditional methods (eight methods in total) were applied to impute missing values. (3) The performances of imputation techniques were evaluated and compared by estimating the sensitivity, AUC and Kappa values of prediction models. (4) Statistical tests were used to evaluate whether the observed performance differences were statistically significant. Results The performances of missing data processing methods were different to a certain extent in different missing scenarios. On the whole, machine learning had better imputation performance than traditional methods, especially in scenarios with high missing proportions. Compared with single machine learning algorithms, the performance of EL was more prominent, followed by neural networks. Meanwhile, EL was most suitable for missing imputation under MAR (the ratio of missing proportion 2:1) mechanism, and its average sensitivity, AUC and Kappa values reached 0.908, 0.924 and 0.596 respectively. Conclusions In clinical decision making, the characteristics of missing data should be actively explored before formulating missing data processing strategies. The outstanding imputation performance of machine learning methods, especially EL, shed light on the development of missing data processing technology, and provided methodological support for clinical decision making in presence of incomplete data.


Thyroid is an unending and complex infection caused by unedifying levels of TSH (Thyroid Simulation Hormone) or by thyroid organ problems themselves. Hashimoto's thyroid is the most widely recognized cause of hypothyroidism. The body makes anticorps that pulverize the thyroid organ in an auto-safe condition. It offers machine learning algorithms in the system proposed to predict thyroid disease in disease-intensive societies effectively. This is a serious concern for public health even though it is massively increasing in many countries. This shows that the problem must be predicted as urgently as possible to overcome the shortcomings of previously existing clinical decision-making tools with low precision. This paper examines numerous machine learning strategies for osteoporosis prediction. The paper examines and assesses the use of the strategy of feature selection combined with classification techniques. WEKA's classification techniques are used to measure an osteoporosis data set. The results are calculated by means of various test options, including 10-fold cross-validation, training sets and the percentage divided with and without the selection method. The results are compared with correctly classified instances, runtime, kappa and absolute mean values for experiments with and without feature selection techniques.


Sign in / Sign up

Export Citation Format

Share Document