scholarly journals Host Species Determines Symbiotic Community Composition in Antarctic Sponges (Porifera: Demospongiae)

2020 ◽  
Vol 7 ◽  
Author(s):  
Oriol Sacristán-Soriano ◽  
Natalia Pérez Criado ◽  
Conxita Avila
PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e2930 ◽  
Author(s):  
Temir A. Britayev ◽  
Elena Mekhova ◽  
Yury Deart ◽  
Daniel Martin

To assess whether closely related host species harbour similar symbiotic communities, we studied two polychaetes,Chaetopterussp. (n = 11) andChaetopteruscf.appendiculatus(n = 83) living in soft sediments of Nhatrang Bay (South China Sea, Vietnam). The former harboured the porcellanid crabsPolyonyxcf.heokandPolyonyxsp., the pinnotherid crabTetriassp. and the tergipedid nudibranchPhestillasp. The latter harboured the polynoid polychaeteOphthalmonoe pettiboneae, the carapid fishOnuxodon fowleriand the porcellanid crabEulenaios cometes, all of which, exceptO. fowleri, seemed to be specialized symbionts. The species richness and mean intensity of the symbionts were higher inChaetopterussp. than inC.cf.appendiculatus(1.8 and 1.02 species and 3.0 and 1.05 individuals per host respectively). We suggest that the lower density ofChaetopterussp. may explain the higher number of associated symbionts observed, as well as the 100% prevalence (69.5% inC.cf.appenciculatus). MostChaetopterussp. harboured two symbiotic species, which was extremely rare inC.cf.appendiculatus, suggesting lower interspecific interactions in the former. The crab and nudibranch symbionts ofChaetopterussp. often shared a host and lived in pairs, thus partitioning resources. This led to the species coexisting in the tubes ofChaetopterussp., establishing a tightly packed community, indicating high species richness and mean intensity, together with a low species dominance. In contrast, the aggressive, strictly territorial species associated withC.cf.appendiculatusestablished a symbiotic community strongly dominated by single species and, thus, low species richness and mean intensity. Therefore, we suggest that interspecific interactions are determining species richness, intensity and dominance, while intraspecific interactions are influencing only intensity and abundance. It is possible that species composition may have influenced the differences in community structure observed. We hypothesize that both host species could originally be allopatric. The evolutionary specialization of the symbiotic communities would occur in separated geographical areas, while the posterior disappearance of the existing geographical barriers would lead to the overlapped distribution.


2004 ◽  
Vol 73 (4) ◽  
pp. 255-261 ◽  
Author(s):  
Daniel F.R. Cleary

Parasitoid assemblages infesting Yponomeuta species in the Netherlands were investigated. Parasitoid species richness and community composition were related to host species, habitat, temporal and spatial variation. Both community structure and species richness did not differ among habitats. There was no significant difference in species richness between years (1994 and 1995) but there was a significant difference in community composition. Community composition and species richness both differed among host species, although this latter result was solely due to the host species Y. evonymellus. There was no significant relationship between community similarity and distance. These results indicate that the parasitoids of the moth genus Yponomeuta in the Netherlands appear to form a spatially stable, but temporally variable community. Most of the variation in community structure was, however, related to the host species. The marked difference in parasitoid species richness and community composition of Y. evonymellus when compared to the other species warrants further study.


2021 ◽  
Author(s):  
Anna Mankowski ◽  
Manuel Kleiner ◽  
Christer Erséus ◽  
Nikolaus Leisch ◽  
Yui Sato ◽  
...  

AbstractMany animals are obligately associated with microbial symbionts that provide essential services such as nutrition or protection against predators. It is assumed that in such obligate associations fidelity between the host and its symbionts must be high to ensure the evolutionary success of the symbiosis. We show here that this is not the case in marine oligochaete worms, despite the fact that they are so dependent on their bacterial symbionts for their nutrition and waste recycling that they have lost their digestive and excretory systems. Our metagenomic analyses of 64 gutless oligochaete species from around the world revealed highly variable levels of fidelity not only across symbiont lineages, but also within symbiont clades. We hypothesize that in gutless oligochaetes, selection within host species for locally adapted and temporally stable symbiont communities leads to varying levels of symbiont fidelity and shuffles the composition of symbiont assemblages across geographic and evolutionary scales.


2016 ◽  
Vol 105 (2) ◽  
pp. 540-548 ◽  
Author(s):  
Holly B. Vuong ◽  
Peter H. Thrall ◽  
Luke G. Barrett

2017 ◽  
Author(s):  
JH Baumann ◽  
SW Davies ◽  
HE Aichelman ◽  
KD Castillo

AbstractReef-building corals maintain a symbiotic relationship with dinoflagellate algae of the genus Symbiodinium and this symbiosis is vital for the survival of the coral holobiont. Symbiodinium community composition within the coral host has been shown to influence a coral’s ability to resist and recover from stress. A multitude of stressors including ocean warming, ocean acidification, and eutrophication have been linked to global scale decline in coral health and cover in recent decades. Three distinct thermal regimes (highTP, modTP, and lowTP) following an inshore-offshore gradient of declining average temperatures and thermal variation were identified on the Belize Mesoamerican Barrier Reef System (MBRS). Quantitative metabarcoding of the ITS-2 locus was employed to investigate differences and similarities in Symbiodinium genetic diversity of the Caribbean corals Siderastrea siderea, S. radians, and Pseudodiploria strigosa between the three thermal regimes. A total of ten Symbiodinium lineages were identified across the three coral host species. Siderastrea siderea associated with distinct Symbiodinium communities, however Symbiodinium communities of its congener, S. radians, and P. strigosa, were more similar to one another. Thermal regime played a role in defining Symbiodinium communities in S. siderea but not S. radians or P. strigosa. Against expectations, Symbiodinium trenchii, a symbiont known to confer thermal tolerance, was dominant only in S. siderea at one sampled offshore site and was rare inshore, suggesting that coral thermal tolerance in more thermally variable inshore habitats is achieved through alternative mechanisms. Overall, thermal parameters alone were likely not the only primary drivers of Symbiodinium community composition, suggesting that environmental variables unrelated to temperature (i.e., light availability, or nutrients) may play key roles in structuring coral-algal communities in Belize and that the relative importance of these environmental variables may vary by coral host species.


2020 ◽  
Author(s):  
Jessica L. Abbate ◽  
Maxime Galan ◽  
Maria Razzauti ◽  
Tarja Sironen ◽  
Liina Voutilainen ◽  
...  

AbstractRodents are major reservoirs of pathogens that can cause disease in humans and livestock. It is therefore important to know what pathogens naturally circulate in rodent populations, and to understand the factors that may influence their distribution in the wild. Here, we describe the incidence and distribution patterns of a range of endemic and zoonotic pathogens circulating among rodent communities in northern France. The community sample consisted of 713 rodents, including 11 host species from diverse habitats. Rodents were screened for virus exposure (hantaviruses, cowpox virus, Lymphocytic choriomeningitis virus, Tick-borne encephalitis virus) using antibody assays. Bacterial communities were characterized using 16S rRNA amplicon sequencing of splenic samples. Multiple correspondence (MCA), regression and association screening (SCN) analyses were used to determine the degree to which extrinsic factors contributed to pathogen community structure, and to identify patterns of associations between pathogens within hosts. We found a rich diversity of bacterial genera, with 36 known or suspected to be pathogenic. We revealed that host species is the most important determinant of pathogen community composition, and that hosts that share habitats can have very different pathogen communities. Pathogen diversity and co-infection rates also vary among host species. Aggregation of pathogens responsible for zoonotic diseases suggests that some rodent species may be more important for transmission risk than others. Moreover we detected positive associations between several pathogens, including Bartonella, Mycoplasma species, Cowpox virus (CPXV) and hantaviruses, and these patterns were generally specific to particular host species. Altogether, our results suggest that host and pathogen specificity is the most important driver of pathogen community structure, and that interspecific pathogen-pathogen associations also depend on host species.


Sign in / Sign up

Export Citation Format

Share Document