scholarly journals Early Diagenesis in Sediments of the Venice Lagoon (Italy) and Its Relationship to Hypoxia

2021 ◽  
Vol 7 ◽  
Author(s):  
Daniele Brigolin ◽  
Christophe Rabouille ◽  
Clément Demasy ◽  
Bruno Bombled ◽  
Gaël Monvoisin ◽  
...  

This work focuses on sediments of a shallow water lagoon, located in a densely populated area undergoing multiple stressors, with the goal of increasing the understanding of the links between diagenetic processes occurring in sediments, the dynamics of dissolved oxygen (DO) in the water column, and potential consequences of hypoxia. Sediment data were collected over three consecutive years, from 2015 to 2017, during spring–summer, at five stations. Measured variables included: sediment porosity, grain size and organic carbon content, porewater microprofiles of O2, pH and H2S, porewater profiles of dissolved inorganic carbon (DIC), total alkalinity (TA), NH4+, NO3–, dissolved Fe, and SO42–. In addition, long-term time series of oxygen saturations in the water column (years 2005–2017) were utilized in order to identify the occurrence and duration of hypoxic periods. The results show that the median DO saturation value in summer months was below 50% (around 110 μmol L–1), and that saturation values below 25% (below the hypoxic threshold) can persist for more than 1 week. Sediment stations can be divided in two groups based on their diagenetic intensity: intense and moderate. At these two groups of stations, the average DIC net production rates, estimated trough a steady-state model (Profile) were, respectively, of 2.8 and 1.0 mmol m–2 d–1, SO42– consumption rates were respectively 1.6 and 0.4 mmol m–2 d–1, while diffusive oxygen uptake fluxes, calculated from the sediment microprofile data, were of 28.5 and 17.5 mmol m–2 d–1. At the stations characterized by intense diagenesis, total dissolved sulfide accumulated in porewaters close to the sediment-water interface, reaching values of 0.7 mM at 10 cm. Considering the typical physico-chemical summer conditions, the theoretical time required to consume oxygen down to the hypoxic level by sediment oxygen demand ranges between 5 and 18 days, in absence of mixing and re-oxygenation. This estimation highlights that sediment diagenesis may play a crucial role in triggering and maintaining hypoxia of lagoon waters during the summer season in specific high intensity diagenesis zones. This role of the sediment could be enhanced by changes in regional climate conditions, such as the increase in frequency of summer heat waves.

2017 ◽  
Vol 68 (9) ◽  
pp. 1593 ◽  
Author(s):  
Lynda Radke ◽  
Tony Nicholas ◽  
Peter A. Thompson ◽  
Jin Li ◽  
Eric Raes ◽  
...  

Surficial marine sediments are an important source of nutrients for productivity and biodiversity, yet the biogeochemistry of these sediments is poorly known in Australia. Seabed samples were collected at >350 locations in Australia’s western, northern and eastern continental margins during Federal Government surveys (2007–14). Parameters analysed included measures of organic matter (OM) source (δ13C, δ15N and C:N ratios), concentration (percentage total organic carbon,%TOC, and surface area-normalised TOC, OC:SA) and bioavailability (chlorin indices, total reactive chlorins, total oxygen uptake, total sediment metabolism (TSM), sediment oxygen demand (SOD) and SOD and TSM normalised against TOC). The aim of the present study was to summarise these biogeochemical ‘baseline’ data and make contextualised inferences about processes that govern the observed concentrations. The OM was primarily from marine sources and the OC:SA broadly reflected water column productivity (based on Moderate Resolution Imaging Spectroradiometer, MODIS). Approximately 40% of sediments were organic poor by global standards, reflecting seawater oligotrophy; ~12% were organic rich due to benthic production, high water column productivity and pockmark formation. OM freshness varied due to pigment degradation in water columns and dilution with refractory OM in reworked sediments. δ15N values confirmed the importance of N2 fixation to Timor Sea productivity, and point to recycling of fixed nitrogen within food chains in Western Australia.


2020 ◽  
Vol 26 (4) ◽  
pp. 375-399
Author(s):  
Theodor Kindeberg ◽  
Nicholas R. Bates ◽  
Travis A. Courtney ◽  
Tyler Cyronak ◽  
Alyssa Griffin ◽  
...  

Abstract Seagrass systems are integral components of both local and global carbon cycles and can substantially modify seawater biogeochemistry, which has ecological ramifications. However, the influence of seagrass on porewater biogeochemistry has not been fully described, and the exact role of this marine macrophyte and associated microbial communities in the modification of porewater chemistry remains equivocal. In the present study, carbonate chemistry in the water column and porewater was investigated over diel timescales in contrasting, tidally influenced seagrass systems in Southern California and Bermuda, including vegetated (Zostera marina) and unvegetated biomes (0–16 cm) in Mission Bay, San Diego, USA and a vegetated system (Thallasia testudinium) in Mangrove Bay, Ferry Reach, Bermuda. In Mission Bay, dissolved inorganic carbon (DIC) and total alkalinity (TA) exhibited strong increasing gradients with sediment depth. Vertical porewater profiles differed between the sites, with almost twice as high concentrations of DIC and TA observed in the vegetated compared to the unvegetated sediments. In Mangrove Bay, both the range and vertical profiles of porewater carbonate parameters such as DIC and TA were much lower and, in contrast to Mission Bay where no distinct temporal signal was observed, biogeochemical parameters followed the semi-diurnal tidal signal in the water column. The observed differences between the study sites most likely reflect a differential influence of biological (biomass, detritus and infauna) and physical processes (e.g., sediment permeability, residence time and mixing) on porewater carbonate chemistry in the different settings.


2021 ◽  
Author(s):  
Andrea Böhnisch ◽  
Elizaveta Felsche ◽  
Ralf Ludwig

<p>Heat waves are among the most hazardous climate extremes in Europe, commonly affecting large regions for a considerable amount of time. Especially in the recent past, heat waves account for substantial economic, social and ecologic impacts and loss. Projections suggest that their number, duration and intensity increase under changing climate conditions, stressing the importance of quantifying their characteristics. Yet, apart from the analysis of single historical events, little research is dedicated to the general propagation of heat waves in space and time.  <br>Heat waves are rare in their occurrence and limited observational data provide little means for robust analyses and the understanding of dynamical spatio-temporal patterns. Therefore, we seek to increase the number of analyzable events by using a large climate model ensemble. The use of several model members of comparable climate statistics allows to robustly assessing various spatial patterns of heat waves as well as their typical temporal evolutions.  <br>Here, we explore a data-driven approach to infer cause-and-effect relationships from, in this case, regional climate model ensemble data in order to analyze the spatio-temporal propagation of spatially distributed phenomena. Our aim is to investigate specifically the transitions and inter-dependencies among heat waves in Europe. The approach includes the identification of most frequent heat wave patterns by clustering and the derivation of directed links between core regions of these heat wave classes using causal discovery in a data set of high spatial resolution. <br>We present the setup of our framework, including clustering results of heat waves and first results of our analysis.</p>


2018 ◽  
Vol 147 ◽  
pp. 03004
Author(s):  
Dhimas Dwinandha ◽  
Haryo Satriyo Tomo

A laboratory study was conducted with the aim to determine the correlation between sediment characteristics and multiphase flow analysis of carrier fluid to the presence of SOD. Six sediment samples were tested on their physical and chemical characteristics along with particle size distribution of sediments to find the indication of oxygen consumption and to classify the soil sediment class. For multiphase flow analysis, there were two transition velocities calculated: the transition between a pseudo-homogenous flow and a heterogeneous flow and the limit deposit velocities at the onset of solid particle bed. The SOD test was done in laboratory-scale by using a 600-mL reactor. According to tests, the amount of organic carbon content (TOC) in the samples were ranging from 34.58 to 81.27%, with the sediments’ textures categorised as silt loam, silty clay loam, and sand. In the channels, heterogeneous flow occurred in two channel segments, while the other segments’ regime was classified as homogeneous flow. The obtained SOD values were varied from 0.2427 to 0.8487 g/m2/day with K3 values obtained ranged from 8.6537 to 12.4028 m-1. Based on all analysis, the organic characteristic of sediment holds a key role in the presence of SOD value.


2013 ◽  
Vol 6 (2) ◽  
pp. 389-409
Author(s):  
T. McGrath ◽  
C. Kivimäe ◽  
E. McGovern ◽  
R. R. Cave ◽  
E. Joyce

Abstract. This paper describes the sampling and analysis of biogeochemical parameters collected in the Rockall Trough in January/February of 2009, 2010, 2011 and 2012. Sampling was carried out across two transects, one southern and one northern transect each year. Samples for dissolved inorganic carbon (DIC) and total alkalinity (TA) were taken alongside salinity, dissolved oxygen and dissolved inorganic nutrients (total-oxidised nitrogen, nitrite, phosphate and silicate) to describe the chemical signatures of the various water masses in the region. These were taken at regular intervals through the water column. The 2009 and 2010 data are available on the CDIAC database.


2016 ◽  
Vol 10 (5) ◽  
pp. 2173-2189 ◽  
Author(s):  
Nicolas-Xavier Geilfus ◽  
Ryan J. Galley ◽  
Brent G. T. Else ◽  
Karley Campbell ◽  
Tim Papakyriakou ◽  
...  

Abstract. The precipitation of ikaite and its fate within sea ice is still poorly understood. We quantify temporal inorganic carbon dynamics in sea ice from initial formation to its melt in a sea ice–seawater mesocosm pool from 11 to 29 January 2013. Based on measurements of total alkalinity (TA) and total dissolved inorganic carbon (TCO2), the main processes affecting inorganic carbon dynamics within sea ice were ikaite precipitation and CO2 exchange with the atmosphere. In the underlying seawater, the dissolution of ikaite was the main process affecting inorganic carbon dynamics. Sea ice acted as an active layer, releasing CO2 to the atmosphere during the growth phase, taking up CO2 as it melted and exporting both ikaite and TCO2 into the underlying seawater during the whole experiment. Ikaite precipitation of up to 167 µmolkg−1 within sea ice was estimated, while its export and dissolution into the underlying seawater was responsible for a TA increase of 64–66 µmolkg−1 in the water column. The export of TCO2 from sea ice to the water column increased the underlying seawater TCO2 by 43.5 µmolkg−1, suggesting that almost all of the TCO2 that left the sea ice was exported to the underlying seawater. The export of ikaite from the ice to the underlying seawater was associated with brine rejection during sea ice growth, increased vertical connectivity in sea ice due to the upward percolation of seawater and meltwater flushing during sea ice melt. Based on the change in TA in the water column around the onset of sea ice melt, more than half of the total ikaite precipitated in the ice during sea ice growth was still contained in the ice when the sea ice began to melt. Ikaite crystal dissolution in the water column kept the seawater pCO2 undersaturated with respect to the atmosphere in spite of increased salinity, TA and TCO2 associated with sea ice growth. Results indicate that ikaite export from sea ice and its dissolution in the underlying seawater can potentially hamper the effect of oceanic acidification on the aragonite saturation state (Ωaragonite) in fall and in winter in ice-covered areas, at the time when Ωaragonite is smallest.


2013 ◽  
Vol 5 (2) ◽  
pp. 375-383 ◽  
Author(s):  
T. McGrath ◽  
C. Kivimäe ◽  
E. McGovern ◽  
R. R. Cave ◽  
E. Joyce

Abstract. This paper describes the sampling and analysis of biogeochemical parameters collected in the Rockall Trough in January/February of 2009, 2010, 2011 and 2012. Sampling was carried out along two transects, one southern and one northern transect each year. Samples for dissolved inorganic carbon (DIC) and total alkalinity (TA) were taken alongside salinity, dissolved oxygen and dissolved inorganic nutrients (total-oxidized nitrogen, nitrite, phosphate and silicate) to describe the chemical signatures of the various water masses in the region. These were taken at regular intervals through the water column. The data are available on the CDIAC database, http://cdiac.ornl.gov/ftp/oceans/Rockall_Trough/.


2014 ◽  
Vol 11 (11) ◽  
pp. 15827-15887
Author(s):  
M. Hagens ◽  
C. P. Slomp ◽  
F. J. R. Meysman ◽  
D. Seitaj ◽  
J. Harlay ◽  
...  

Abstract. Coastal areas are impacted by multiple natural and anthropogenic processes and experience stronger pH fluctuations than the open ocean. These variations can weaken or intensify the ocean acidification signal induced by increasing atmospheric pCO2. The development of eutrophication-induced hypoxia intensifies coastal acidification, since the CO2 produced during respiration decreases the buffering capacity of the hypoxic bottom water. To assess the combined ecosystem impacts of acidification and hypoxia, we quantified the seasonal variation in pH and oxygen dynamics in the water column of a seasonally stratified coastal basin (Lake Grevelingen, the Netherlands). Monthly water column chemistry measurements were complemented with estimates of primary production and respiration using O2 light-dark incubations, in addition to sediment-water fluxes of dissolved inorganic carbon (DIC) and total alkalinity (TA). The resulting dataset was used to set up a proton budget on a seasonal scale. Temperature-induced seasonal stratification combined with a high community respiration was responsible for the depletion of oxygen in the bottom water in summer. The surface water showed strong seasonal variation in process rates (primary production, CO2 air–sea exchange), but relatively small seasonal pH fluctuations (0.46 units on the total hydrogen ion scale). In contrast, the bottom water showed less seasonality in biogeochemical rates (respiration, sediment–water exchange), but stronger pH fluctuations (0.60 units). This marked difference in pH dynamics could be attributed to a substantial reduction in the acid-base buffering capacity of the hypoxic bottom water in the summer period. Our results highlight the importance of acid-base buffering in the pH dynamics of coastal systems and illustrate the increasing vulnerability of hypoxic, CO2-rich waters to any acidifying process.


Sign in / Sign up

Export Citation Format

Share Document