sediment permeability
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 5)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 13 (12) ◽  
pp. 5847-5866
Author(s):  
Matthew C. Pace ◽  
David M. Bailey ◽  
David W. Donnan ◽  
Bhavani E. Narayanaswamy ◽  
Hazel J. Smith ◽  
...  

Abstract. High-quality quantitative maps of seabed sedimentary physical and geochemical properties have numerous research and conservation applications, including habitat and ecosystem modelling, marine spatial planning, and ecosystem service mapping. However, such maps are lacking for many ecologically and economically important marine areas. Using legacy data supplemented by measurements from recent benthic surveys, modelled hydrodynamic variables, and high-resolution bathymetry, quantitative maps for the top 10 cm of seabed sediment were generated via a combination of statistical and machine-learning techniques for the Firth of Clyde, a semi-enclosed coastal sea on the west coast of Scotland. The maps include sediment fractions of mud, sand, and gravel; whole-sediment median grain size; sediment permeability and porosity; rates of natural seabed abrasion; and sediment particulate organic carbon and nitrogen content. Properties were mapped over an unstructured grid so that very high resolutions were achieved close to the coastlines, where sediments may be expected to be spatially heterogeneous. Overall, the maps reveal extensive areas of very low sediment permeability coupled with low rates of natural seabed disturbance. Moreover, muddy sediments in the inner Firth of Clyde, Inchmarnock Water, and the sea lochs are enriched in organic carbon and nitrogen relative to the sediments of the outer Firth of Clyde. As a demonstration of the value of these maps, the standing stock of organic carbon and nitrogen in the surficial sediments of the Clyde was calculated. The Clyde stores 3.42 and 0.33 million t of organic carbon and nitrogen in the top 10 cm of seabed sediment, respectively, substantially contributing to Scotland's coastal and shelf blue carbon stocks. Data products are available from https://doi.org/10.15129/2003faa2-ee93-4c11-bb16-48485f5f136d (Heath and Pace, 2021).


2021 ◽  
Author(s):  
Matthew C. Pace ◽  
David M. Bailey ◽  
David W. Donnan ◽  
Bhavani E. Narayanaswamy ◽  
Hazel J. Smith ◽  
...  

Abstract. High quality quantitative maps of seabed sedimentary physical and geochemical properties have numerous research and conservation applications, including habitat and ecosystem modelling, marine spatial planning and ecosystem service mapping. However, such maps are lacking for many ecologically and economically important marine areas. Using legacy data supplemented by measurements from recent benthic surveys, modelled hydrodynamic variables and high resolution bathymetry, quantitative maps for the top 10 cm of seabed sediment were generated via a combination of statistical and machine-learning techniques for the Firth of Clyde, a semi-enclosed coastal sea on the west coast of Scotland. The maps include sediment fractions of mud, sand and gravel, whole-sediment median grain size, sediment permeability and porosity, rates of natural seabed abrasion, and sediment particulate organic carbon and nitrogen content. Properties were mapped over an unstructured grid, so that very high resolutions were achieved close to the coastlines, where sediments may be expected to be spatially heterogeneous. Overall, the maps reveal extensive areas of very low sediment permeability coupled with low rates of natural seabed disturbance. Moreover, muddy sediments in the inner Firth of Clyde, Inchmarnock Water and the sea lochs are enriched in organic carbon and nitrogen relative to the sediments of the outer Firth of Clyde. As a demonstration of the value of these maps, the standing stock of organic carbon and nitrogen in the surficial sediments of the Clyde was calculated. The Clyde stores 3.42 and 0.33 million tonnes of organic carbon and nitrogen in the top 10 cm of seabed sediment, respectively, substantially contributing to Scotland’s coastal and shelf blue carbon stocks. Data products are available from: https://doi.org/10.15129/2003faa2-ee93-4c11-bb16-48485f5f136d.


2020 ◽  
Vol 26 (4) ◽  
pp. 375-399
Author(s):  
Theodor Kindeberg ◽  
Nicholas R. Bates ◽  
Travis A. Courtney ◽  
Tyler Cyronak ◽  
Alyssa Griffin ◽  
...  

Abstract Seagrass systems are integral components of both local and global carbon cycles and can substantially modify seawater biogeochemistry, which has ecological ramifications. However, the influence of seagrass on porewater biogeochemistry has not been fully described, and the exact role of this marine macrophyte and associated microbial communities in the modification of porewater chemistry remains equivocal. In the present study, carbonate chemistry in the water column and porewater was investigated over diel timescales in contrasting, tidally influenced seagrass systems in Southern California and Bermuda, including vegetated (Zostera marina) and unvegetated biomes (0–16 cm) in Mission Bay, San Diego, USA and a vegetated system (Thallasia testudinium) in Mangrove Bay, Ferry Reach, Bermuda. In Mission Bay, dissolved inorganic carbon (DIC) and total alkalinity (TA) exhibited strong increasing gradients with sediment depth. Vertical porewater profiles differed between the sites, with almost twice as high concentrations of DIC and TA observed in the vegetated compared to the unvegetated sediments. In Mangrove Bay, both the range and vertical profiles of porewater carbonate parameters such as DIC and TA were much lower and, in contrast to Mission Bay where no distinct temporal signal was observed, biogeochemical parameters followed the semi-diurnal tidal signal in the water column. The observed differences between the study sites most likely reflect a differential influence of biological (biomass, detritus and infauna) and physical processes (e.g., sediment permeability, residence time and mixing) on porewater carbonate chemistry in the different settings.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1570
Author(s):  
Nan Li ◽  
Rezeye Rehemituli ◽  
Jie Zhang ◽  
Changyu Sun

Upward migration of gas-dissolved pore fluid is an important mechanism for many naturally occurring hydrate reservoirs. However, there is limited understanding in this scenario of hydrate formation in sediments. In this preliminary work, hydrate formation and accumulation from dissolved gas in sandy sediments along the migration direction of brine was investigated using a visual hydrate simulator. Visual observation was employed to capture the morphology of hydrates in pores through three sapphire tubes. Meanwhile, the resistivity evolution of sediments was detected to characterize hydrate distribution in sediments. It was observed that hydrates initially formed as a thin film or dispersed crystals and then became a turbid colloidal solution. With hydrate growth, the colloidal solution converted to massive solid hydrates. Electrical resistivity experienced a three-stage evolution process corresponding to the three observed hydrate morphologies. The results of resistivity analysis also indicated that the bottom–up direction of hydrate growth was consistent with the flow direction of brine, and two hydrate accumulation centers successively appeared in the sediments. Hydrates preferentially formed and accumulated in certain depths of the sediments, resulting in heterogeneous hydrate distribution. Even under low saturation, the occurrence of heterogeneous hydrates led to the sharp reduction of sediment permeability.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1436 ◽  
Author(s):  
Brian Babak Mojarrad ◽  
Andrea Betterle ◽  
Tanu Singh ◽  
Carolina Olid ◽  
Anders Wörman

Streambed morphology, streamflow dynamics, and the heterogeneity of streambed sediments critically controls the interaction between surface water and groundwater. The present study investigated the impact of different flow regimes on hyporheic exchange in a boreal stream in northern Sweden using experimental and numerical approaches. Low-, base-, and high-flow discharges were simulated by regulating the streamflow upstream in the study area, and temperature was used as the natural tracer to monitor the impact of the different flow discharges on hyporheic exchange fluxes in stretches of stream featuring gaining and losing conditions. A numerical model was developed using geomorphological and hydrological properties of the stream and was then used to perform a detailed analysis of the subsurface water flow. Additionally, the impact of heterogeneity in sediment permeability on hyporheic exchange fluxes was investigated. Both the experimental and modelling results show that temporally increasing flow resulted in a larger (deeper) extent of the hyporheic zone as well as longer hyporheic flow residence times. However, the result of the numerical analysis is strongly controlled by heterogeneity in sediment permeability. In particular, for homogeneous sediments, the fragmentation of upwelling length substantially varies with streamflow dynamics due to the contribution of deeper fluxes.


Wetlands ◽  
2018 ◽  
Vol 38 (4) ◽  
pp. 779-792 ◽  
Author(s):  
Katarzyna Mięsiak-Wójcik ◽  
Marek Turczyński ◽  
Joanna Sposób

2016 ◽  
pp. 104-121 ◽  
Author(s):  
Hugh Daigle ◽  
Elizabeth J. Screaton

Palaios ◽  
2015 ◽  
Vol 30 (8) ◽  
pp. 608-612 ◽  
Author(s):  
VICTORIA E. MCCOY ◽  
ROBERT T. YOUNG ◽  
DEREK E.G. BRIGGS

Geofluids ◽  
2014 ◽  
Vol 15 (1-2) ◽  
pp. 84-105 ◽  
Author(s):  
H. Daigle ◽  
E. J. Screaton

2011 ◽  
Vol 441 ◽  
pp. 49-63 ◽  
Author(s):  
E Zetsche ◽  
DM Paterson ◽  
DG Lumsdon ◽  
U Witte

Sign in / Sign up

Export Citation Format

Share Document