scholarly journals Nitrogen in Atmospheric Wet Depositions Over the East Indian Ocean and West Pacific Ocean: Spatial Variability, Source Identification, and Potential Influences

2021 ◽  
Vol 7 ◽  
Author(s):  
Shan Jiang ◽  
Jie Jin ◽  
Shuo Jiang ◽  
Ying Wu ◽  
Jianing Wang ◽  
...  

Atmospheric deposition is the dominant pathway for the loading of exogenous nitrogen (N) to open ocean. Here, rainwater samples were collected from 31 stations in the equatorial East Indian Ocean (EIO) and West Pacific Ocean (WPO) to explore the spatial variability of N species, potential sources, and related ecological influences. Among two oceans, nitrate (NO3–) and ammonium (NH4+) were the main components in the rainwater N inventory. NO3– concentrations varied from 0.19 to 100.5 μM, whereas NH4+ concentrations ranged from 0.54 to 110.6 μM. Among all stations, low concentrations of NO3– and NH4+ appeared in the remote ocean, whereas high concentrations were observed at the stations near the Malacca Strait and New Guinea, coupled with an enhancement of non-sea salt major ions, e.g., calcium ions (Ca2+) and sulfate (SO42–), revealing the influence from coastal human activities, such as coal and gasoline combustion. In the remote ocean, δ15N–NH4+ ranged from −5.7 to −9.3‰, whereas it dropped to -15.5‰ near coasts. A logarithmic decay between δ15N–NH4+ and NH4+ concentrations in rainwater samples was obtained, suggesting a shift from natural source (seawater emission) in oceanic precipitation events to anthropogenic source (chemical fertilizer volatilization and vehicle exhaust) in coastal rainwaters. δ15N–NO3– in the remote ocean varied between −1.7 and 0.4‰ with low levels found in the WPO, likely related to the ascending air flow driven by the Walker Circulation. In coastal oceans, δ15N–NO3– ranged from 1.5 to 3.5‰. The linkage between δ15N–NO3– and NO3– concentrations varied in two oceans, resulting from difference in biological and fossil fuel combustion contributions. Compared with ocean surface water, N in the rainwater was markedly enriched, suggesting that N from atmospheric wet depositions could rapidly enhance the dissolved N availability in ocean surface water. However, the N redundancy according to the Redfield–Brzezinski ratio (N:Si:P = 16:16:1) in the rainwater might benefit from the growth of N-preference phytoplankton species and microbes. As the first study on N concentrations, sources, and stoichiometry balance in rainwater over the equatorial WPO and EIO, the results could be a support to the global N budget estimation and oceanic primary production modeling.

2018 ◽  
Vol 31 (13) ◽  
pp. 5293-5318 ◽  
Author(s):  
Stephanie A. Henderson ◽  
Eric D. Maloney

Wintertime high-latitude blocking is associated with persistent changes in temperature and precipitation over much of the Northern Hemisphere. Studies have shown that the Madden–Julian oscillation (MJO), the primary form of intraseasonal tropical variability, significantly modulates the frequency of high-latitude blocking through large-scale Rossby waves that alter the global circulation. However, the characteristics of MJO teleconnections are altered by El Niño–Southern Oscillation (ENSO), which modifies the global flow on interannual time scales, suggesting that the MJO influence on blocking may depend on the ENSO phase. The characteristics of MJO Rossby waves and blocking during ENSO events are examined using composite analysis and a nonlinear baroclinic model. The ENSO phase-dependent teleconnection patterns are found to significantly impact Pacific and Atlantic high-latitude blocking. During El Niño, a significant persistent increase in Pacific and Atlantic blocking follows the real-time multivariate MJO (RMM) phase 7, characterized by anomalous enhanced tropical convection over the East Indian Ocean and suppressed west Pacific convection. The maximum Atlantic blocking increase is triple the climatological winter mean. Results suggest that the MJO provides the initial dipole anomaly associated with the Atlantic blocking increase, and transient eddy activity aids in its persistence. However, during La Niña significant blocking anomalies are primarily observed during the first half of an MJO event. Significant suppression of Pacific and Atlantic blocking follows RMM phase 3, when east Indian Ocean MJO convection is suppressed and west Pacific convection is enhanced. The physical basis for these results is explained.


Zootaxa ◽  
2021 ◽  
Vol 4926 (3) ◽  
pp. 417-430
Author(s):  
JOHN J. POGONOSKI ◽  
ANTHONY C. GILL

The anthiadine genus Dactylanthias is reviewed. Two species, Dactylanthias aplodactylus (Bleeker, 1858) and Dactylanthias baccheti Randall, 2007 are currently recognised, each known only from their holotypes. A specimen of Dactylanthias matching D. baccheti in coloration was recently collected from Nauru in the West Pacific Ocean. It was retained by a recreational fisher and deposited into the CSIRO Australian National Fish Collection, Hobart. Data collected from this specimen and comparison to images of and data from the holotypes of both nominal species indicate that Dactylanthias baccheti Randall, 2007 is a junior synonym of Dactylanthias aplodactylus (Bleeker, 1858). Additional records of specimens from Ambon, Indonesia (type locality of D. apolodactylus) and the Maldives Islands, Indian Ocean are reported. The genus is briefly compared with other anthiadine genera. 


2020 ◽  
Author(s):  
Zehao Shen ◽  
Lingxiao Ying

<p>Wildfire is a widespread natural disturbance and internal ecological process, critical in shaping ecosystem structure and function across scales. The Indo-China Peninsula and its surrounding areas is a global hotspot of fires initiated by natural and anthropogenic drives. Studies indicated that both the Indian Ocean monsoon and the Pacific Ocean monsoon significantly influence the climate in this region, and the precipitation seasonality regulated by monsoon is a critical driver of prevalent wildfires. However, the relative importance of the two monsoon systems on the terrestrial ecosystems in this region, specifically via their effects on vegetation burnings, has rarely been estimated. Yunnan Province in Southwest China comprises the northeast corner of this region, and shares the intensive impacts of the two monsoon systems in terms of the characteristics of climate and wildfire activity. The present study integrated multiple data sources of the forest fires during 2003~2015 in Yunnan, detected the spatial and interannual variations of the fire occurrence and burnt area, and related the fire activities with the dynamics of the Indian Ocean Monsoon (IOM) and West Pacific Ocean Monsoon (WPOM). The monthly time sequence analysis of the forest fire events in Yunnan Province showed that, a significant, synchronous teleconnection can be detected between the forest fire dynamics and Indian Ocean Warm Pool intensity, while an opposite temporal pace was revealed for the West Pacific Ocean Warm Pool. During the study period, IOM dominated the wildfire seasonality in Yunnan in eight years, in contrast to the dominance of WPOM in five years. A borderline can roughly divides Yunnan into the west and the east climatic regions, which were dominated by IOM and WPOM, respectively. Humidity and the forest area ratio were the dominant factors for the mean annual fire number and burnt area in the IOM affected region; but in the WPOM region, rural road density was the most important factor. It was suggested that the fire regime of the IOM region was climate-driven for fire number and fuel-driven for burnt area, while the fire regime was dominant with human activities in the WPOM region in Yunnan</p>


2021 ◽  
pp. 105644
Author(s):  
Ravi Shankar Pandey ◽  
Yuei-An Liou

Sign in / Sign up

Export Citation Format

Share Document