scholarly journals Impediments to Understanding Seagrasses’ Response to Global Change

2021 ◽  
Vol 8 ◽  
Author(s):  
Brianna M. Rock ◽  
Barnabas H. Daru

Uncertainties from sampling biases present challenges to ecologists and evolutionary biologists in understanding species sensitivity to anthropogenic climate change. Here, we synthesize possible impediments that can constrain research to assess present and future seagrass response from climate change. First, our knowledge of seagrass occurrence information is prevalent with biases, gaps and uncertainties that can influence inferences on species response to global change. Second, research on seagrass diversity has been focused on species-level metrics that can be measured with data from the present – but rarely accounting for the shared phylogenetic relationships and evolutionary distinctiveness of species despite species evolved and diversified from shared ancestors. Third, compared to the mass production of species occurrence records, computational tools that can analyze these datasets in a reasonable amount of time are almost non-existent or do not scale well in terms of computer time and memory. These impediments mean that scientists must work with incomplete information and often unrepresentative data to predict how seagrass diversity might change in the future. We discuss these shortfalls and provide a framework for overcoming the impediments and diminishing the knowledge gaps they generate.

2020 ◽  
Vol 41 ◽  
pp. 71-89
Author(s):  
Matheus Oliveira Neves ◽  
Hugo Cabral ◽  
Mariana Pedrozo ◽  
Vanda Lucia Ferreira ◽  
Mário Ribeiro Moura ◽  
...  

There are many gaps in our biodiversity knowledge, especially in highly diverse regions such as the Neotropics. Basic information on species occurrence and traits are scattered throughout different literature sources, which makes it difficult to access data and ultimately delays advances in ecology, evolution, and conservation biology. We provide species occurrence and trait data for amphibian species in the Upper Paraguay River Basin, central South America. The compiled information is made available through two different datasets that hold (i) 17K species occurrence records and (ii) 30 species-level traits for 113 amphibian species. The first dataset includes the species occurrence records and informs specimen id, collection of housing, locality, geographical coordinates, geographic accuracy, collection date, and collector name. The second dataset covers species-level attributes on morphometry, diet, activity, habitat, and breeding strategy. These datasets improve accessibility to spatial and trait data for amphibian species in the Pantanal ecoregion, one of the largest wetlands on Earth.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pamela A. Fernández ◽  
Jorge M. Navarro ◽  
Carolina Camus ◽  
Rodrigo Torres ◽  
Alejandro H. Buschmann

AbstractThe capacity of marine organisms to adapt and/or acclimate to climate change might differ among distinct populations, depending on their local environmental history and phenotypic plasticity. Kelp forests create some of the most productive habitats in the world, but globally, many populations have been negatively impacted by multiple anthropogenic stressors. Here, we compare the physiological and molecular responses to ocean acidification (OA) and warming (OW) of two populations of the giant kelp Macrocystis pyrifera from distinct upwelling conditions (weak vs strong). Using laboratory mesocosm experiments, we found that juvenile Macrocystis sporophyte responses to OW and OA did not differ among populations: elevated temperature reduced growth while OA had no effect on growth and photosynthesis. However, we observed higher growth rates and NO3− assimilation, and enhanced expression of metabolic-genes involved in the NO3− and CO2 assimilation in individuals from the strong upwelling site. Our results suggest that despite no inter-population differences in response to OA and OW, intrinsic differences among populations might be related to their natural variability in CO2, NO3− and seawater temperatures driven by coastal upwelling. Further work including additional populations and fluctuating climate change conditions rather than static values are needed to precisely determine how natural variability in environmental conditions might influence a species’ response to climate change.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 470
Author(s):  
Martha Charitonidou ◽  
Konstantinos Kougioumoutzis ◽  
John M. Halley

Climate change is regarded as one of the most important threats to plants. Already species around the globe are showing considerable latitudinal and altitudinal shifts. Helen’s bee orchid (Ophrys helenae), a Balkan endemic with a distribution center in northwestern Greece, is reported to be expanding east and southwards. Since this southeastern movement goes against the usual expectations, we investigated via Species Distribution Modelling, whether this pattern is consistent with projections based on the species’ response to climate change. We predicted the species’ future distribution based on three different climate models in two climate scenarios. We also explored the species’ potential distribution during the Last Interglacial and the Last Glacial Maximum. O. helenae is projected to shift mainly southeast and experience considerable area changes. The species is expected to become extinct in the core of its current distribution, but to establish a strong presence in the mid- and high-altitude areas of the Central Peloponnese, a region that could have provided shelter in previous climatic extremes.


Eos ◽  
1988 ◽  
Vol 69 (25) ◽  
pp. 668
Author(s):  
S.I. Rasool

2016 ◽  
Vol 64 (spe2) ◽  
pp. 117-136 ◽  
Author(s):  
Paulo Antunes Horta ◽  
Pablo Riul ◽  
Gilberto M. Amado Filho ◽  
Carlos Frederico D. Gurgel ◽  
Flávio Berchez ◽  
...  

Abstract Rhodolith beds are important marine benthic ecosystems, representing oases of high biodiversity among sedimentary seabed environments. They are found frequently and abundantly, acting as major carbonate 'factories' and playing a key role in the biogeochemical cycling of carbonates in the South Atlantic. Rhodoliths are under threat due to global change (mainly related to ocean acidification and global warming) and local stressors, such as fishing and coastal run-off. Here, we review different aspects of the biology of these organisms, highlighting the predicted effects of global change, considering the additional impact of local stressors. Ocean acidification (OA) represents a particular threat that can reduce calcification or even promote the decalcification of these bioengineers, thus increasing the eco-physiological imbalance between calcareous and fleshy algae. OA should be considered, but this together with extreme events such as heat waves and storms, as main stressors of these ecosystems at the present time, will worsen in the future, especially if possible interactions with local stressors like coastal pollution are taken into consideration. Thus, in Brazil there is a serious need for starting monitoring programs and promote innovative experimental infrastructure in order to improve our knowledge of these rich environments, optimize management efforts and enhance the needed conservation initiatives.


Author(s):  
Chiara Xausa

Through a reading of Cherie Dimaline’s 2017 young adult novel The Marrow Thieves, a survival story set in a futuristic Canada destroyed by global warming, this article explores the conceptualization and reimagination of the Anthropocene in contemporary postcolonial and Indigenous theory and fiction. Firstly, I will argue that literary representations of climate change can be complicit in producing hegemonic strands of Anthropocene discourse that consider human destructiveness and vulnerability at undifferentiated species level. Secondly, I will suggest that the novel’s apocalypse reveals the processes of colonial violence and dispossession that have culminated in the eruptive event of environmental catastrophe, rather than portraying a story of universal and disembodied human threat that conceals oppression against Indigenous people.


Sign in / Sign up

Export Citation Format

Share Document