scholarly journals Avicennia Genetic Diversity and Fine-Scaled Structure Influenced by Coastal Proximity of Mangrove Fragments

2021 ◽  
Vol 8 ◽  
Author(s):  
Ludwig Triest ◽  
Alieza Del Socorro ◽  
Vincent Jay Gado ◽  
Analyn M. Mazo ◽  
Tim Sierens

Avicennia dominated mangrove forests occur from seaward to landward sites and hence are subject to different dynamics within estuarine ecosystems. Regeneration of mangrove forests primarily depends on the extent of propagule spread and subsequent establishment in suitable habitats. The complex nature of estuarine systems induces a wide variety of local conditions for within-site propagule retention and settlement thereby allowing spontaneous regeneration of mangroves. In this study, we estimated the fine-scale spatial genetic structure (FSGS) of Avicennia populations and examined whether their position relative to the seaside or the size of mangrove patches could have influenced the extant local population genetic structure. A kinship-based FSGS was performed using microsatellite markers in 523 A. marina, 189 A. rumphiana and 60 A. alba adult trees of 24 sites in The Philippines. Transects within each estuary were taken both parallel and perpendicular to the coastline or tidal river edge. The extent of local mangrove areas and various human-induced encroachments as such did not show any trend in allele diversity, heterozygosity values or inbreeding levels. However, farther inland situated mangrove patches showed a larger FSGS extent across the neighborhood (up to 75 m) though less diversity along with inbreeding, most likely due to retention of related propagules and lowered chance of external propagule input. Estimation of connectivity along a same coastline stretch supported a unidirectional steppingstone or adjacent migration model for populations of either A. marina, A. alba or A. rumphiana. These were congruent with ocean currents across mangrove estuaries of the Tablas Strait and along Western Leyte, thereby emphasizing the relevance of coastal connectivity for long term persistence. From this study, we conclude that both proximity to open water and narrowness of mangrove patches may affect their captured diversity, inbreeding and fine-scale structure caused by propagule movement within or beyond a local mangrove fragment during recent generations. Higher levels of allele diversity for seaward sites and highest likelihood of migration for adjacent mangroves both add to the importance of coastal connectivity that is the only natural cohesive force on longer term and necessary to counteract short term effects of increasingly encroached mangrove environments.

2011 ◽  
Vol 131 (3) ◽  
pp. 739-746 ◽  
Author(s):  
Madhav Pandey ◽  
Oliver Gailing ◽  
Hans H. Hattemer ◽  
Reiner Finkeldey

PLoS ONE ◽  
2018 ◽  
Vol 13 (3) ◽  
pp. e0193501
Author(s):  
James R. Smith ◽  
Jaboury Ghazoul ◽  
David F. R. P. Burslem ◽  
Akira Itoh ◽  
Eyen Khoo ◽  
...  

2019 ◽  
Vol 28 (19) ◽  
pp. 4363-4374 ◽  
Author(s):  
Antonio R. Castilla ◽  
Pedro J. Garrote ◽  
Magdalena Żywiec ◽  
Gemma Calvo ◽  
Alberto Suárez‐Esteban ◽  
...  

2020 ◽  
Vol 93 (5) ◽  
pp. 652-661 ◽  
Author(s):  
Georgina Sola ◽  
Verónica El Mujtar ◽  
Leonardo Gallo ◽  
Giovanni G Vendramin ◽  
Paula Marchelli

Abstract Understanding the impact of management on the dispersal potential of forest tree species is pivotal in the context of global change, given the implications of gene flow on species evolution. We aimed to determine the effect of logging on gene flow distances in two Nothofagus species from temperate Patagonian forests having high ecological relevance and wood quality. Therefore, a total of 778 individuals (mature trees and saplings) of Nothofagus alpina and N. obliqua, from a single plot managed 20 years ago (2.85 hectares), were mapped and genotyped at polymorphic nuclear microsatellite loci. Historical estimates of gene dispersal distance (based on fine-scale spatial genetic structure) and contemporary estimates of seed and pollen dispersal (based on spatially explicit mating models) were obtained. The results indicated restricted gene flow (gene distance ≤ 45 m, both pollen and seed), no selfing and significant seed and pollen immigration from trees located outside the studied plot but in the close surrounding area. The size of trees (diameter at breast height and height) was significantly associated with female and/or male fertility. The significant fine-scale spatial genetic structure was consistent with the restricted seed and pollen dispersal. Moreover, both estimates of gene dispersal (historical and contemporary) gave congruent results. This suggests that the recent history of logging within the study area has not significantly influenced on patterns of gene flow, which can be explained by the silviculture applied to the stand. The residual tree density maintained species composition, and the homogeneous spatial distribution of trees allowed the maintenance of gene dispersal. The short dispersal distance estimated for these two species has several implications both for understanding the evolution of the species and for defining management, conservation and restoration actions. Future replication of this study in other Nothofagus Patagonian forests would be helpful to validate our conclusions.


2016 ◽  
Vol 3 ◽  
Author(s):  
Heidi Ahonen ◽  
Andrew D. Lowther ◽  
Robert G. Harcourt ◽  
Simon D. Goldsworthy ◽  
Isabelle Charrier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document