scholarly journals Mediterranean Coral Provinces as a Sponge Diversity Reservoir: Is There a Mediterranean Cold-Water Coral Sponge Fauna?

2021 ◽  
Vol 8 ◽  
Author(s):  
Andreu Santín ◽  
Jordi Grinyó ◽  
Maria Jesús Uriz ◽  
Claudio Lo Iacono ◽  
Josep Maria Gili ◽  
...  

Cold-water coral reefs (CWC) are known to be biodiversity hotspots, however, the sponge assemblages found to dwell within these habitats haven not been studied in depth to date in the Mediterranean Sea. The present article provides the first insight on the associated sponge fauna of the recently discovered CWC communities on the Catalan Margin and, to a lesser extent, the Cabliers Coral Mound Province, while also reviewing the current knowledge of the sponge fauna dwelling in all the Mediterranean CWC provinces. In regards to the studied areas, some rare species are cited for the first time in the Mediterranean or redescribed, while two of them, Hamacantha (Hamacantha) hortae sp. nov. and Spongosorites cabliersi sp. nov. are new to science. At a basin scale, Mediterranean CWC appear as poriferan biodiversity hotspots, yet current diversity values on each site rather represent a small fraction of its actual fauna. Additionally, the existence of an endemic sponge fauna exclusively dwelling on CWC is refuted. Nonetheless, the sponge fauna thriving in Mediterranean CWC appears to be unique, and different from that of other Atlantic regions. Finally, with the current knowledge, the sponge fauna from the Mediterranean CWC is grouped in three distinguishable clusters (Alboran Sea, Western and Eastern Mediterranean), which appears to be determined by the basins water circulation, specially the Levantine Intermediate Water and the Atlantic Water following a western-eastern pattern from the Strait of Gibraltar to the Adriatic Sea. Overall, sponge living in Mediterranean CWC are still poorly explored in most areas, yet they appear to be good candidates for biogeographical studies.Zoobank Registration: LSID urn:lsid:zoobank.org:pub:E58A3DFF-EDC5-44FC-A274-1C9508BF8D15.

Author(s):  
M. Taviani ◽  
L. Angeletti ◽  
S. Canese ◽  
R. Cannas ◽  
F. Cardone ◽  
...  

2021 ◽  
Vol 262 ◽  
pp. 109301
Author(s):  
Maria Montseny ◽  
Cristina Linares ◽  
Núria Viladrich ◽  
Marina Biel ◽  
Nuno Gracias ◽  
...  

2017 ◽  
Author(s):  
Michaela Knoll ◽  
Ines Borrione ◽  
Heinz-Volker Fiekas ◽  
Andreas Funk ◽  
Michael P. Hemming ◽  
...  

Abstract. In the mainframe of the REP14-MED sea trial in June 2014, the hydrography and circulation west of Sardinia, observed by means of gliders, shipborne CTD instruments, towed devices, and vessel-mounted ADCPs, are presented and compared with previous knowledge. So far, the circulation is not well known in this area, and the hydrography is subject to long-term changes. Potential temperature, salinity, and potential density ranges, as well as core values of the observed water masses were determined. Modified Atlantic Water (MAW), with potential density anomalies below 28.72 kg m−3, showed a salinity minimum of 37.93 at 50 dbar. Levantine Intermediate Water (LIW), with a salinity maximum of about 38.70 at 400 dbar, was observed within a range of 28.72 < σΘ [kg m−3] < 29.10. MAW and LIW showed slightly higher salinities than previous investigations. During the trial, LIW covered the whole area from the Sardinian shelf to 7°15' E. Only north of 40° N was it tied to the continental slope. Within the MAW, a cold and saline anticyclonic eddy was observed in the southern trial area. The strongest variability in temperature and salinity appeared around this eddy, and in the southwestern part of the domain, where unusually low saline surface water entered the area towards the end of the experiment. An anticyclonic eddy of Winter Intermediate Water was recorded moving northward at 0.014 m s−1. Geostrophic currents and water mass transports calculated across zonal and meridional transects showed a good agreement with vessel-mounted ADCP measurements. Within the MAW, northward currents were observed over the shelf and offshore, while a southward transport of about 1.5 Sv occurred over the slope. A net northward transport of 0.38 Sv across the southern transect decreased to zero in the north. Within the LIW, northward transport of 0.6 Sv across the southern transects were mainly observed offshore, and decreased to 0.3 Sv in the north where they were primarily located over the slope. This presentation of the REP14-MED observations helps to further understand the long-term evolution of hydrography and circulation in the Western Mediterranean, where considerable changes occurred after the Eastern Mediterranean Transient and the Western Mediterranean Transition.


Diversity ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 57
Author(s):  
Marika Galanidi ◽  
Argyro Zenetos

In the present work, we analysed time series data on the introduction of new non-indigenous species (NIS) in the Mediterranean between 1970 and 2017, aiming to arrive at recommendations concerning the reference period and provisional threshold values for the NIS trend indicator. We employed regression analysis and breakpoint structural analysis. Our results confirm earlier findings that the reference conditions differ for the four Mediterranean subregions, and support a shortening of the reporting cycle from six to three years, with a two-year time lag for the ensuing assessment. Excluding Lessepsian fishes and parasites, the reference period, defined as the most recent time segment with stable mean new NIS values, was estimated as 1997–2017 for the eastern Mediterranean, 2012–2017 for the central Mediterranean, 2000–2017 for the Adriatic and 1970–2017 for the western Mediterranean. These findings are interpreted primarily on the basis of a basin scale temperature regime shift in the late 1990s, shifts in driving forces such as shellfish culture, and as a result of intensified research efforts and citizen scientist initiatives targeting NIS in the last decade. The threshold values, i.e., the three-year average new NIS values during the reference period, are indicative and will ultimately depend on the choice of species and pathways to be used in the calculations. This is discussed through the prism of target setting in alignment with specific management objectives.


2021 ◽  
Author(s):  
Giusy Fedele ◽  
Elena Mauri ◽  
Giulio Notarstefano ◽  
Pierre Marie Poulain

Abstract. The Atlantic Water (AW) and Levantine Intermediate Water (LIW) are important water masses that play a crucial role in the internal variability of the Mediterranean thermohaline circulation. In particular, their variability and interaction, along with other water masses that characterize the Mediterranean basin, such as the Western Mediterranean Deep Water (WMDW), contribute to modify the Mediterranean Outflow through the Gibraltar Strait and hence may influence the stability of the global thermohaline circulation. This work aims to characterize the AW and LIW in the Mediterranean Sea, taking advantage of the large observational dataset provided by Argo floats from 2001 to 2019. Using different diagnostics, the AW and LIW were identified, highlighting the inter-basin variability and the strong zonal gradient that characterize the two water masses in this marginal sea. Their temporal variability was also investigated focusing on trends and spectral features which constitute an important starting point to understand the mechanisms that are behind their variability. A clear salinification and warming trend have characterized the AW and LIW in the last two decades (~0.007 and 0.008 yr−1; 0.018 and 0.007 °C yr−1, respectively). The salinity and temperature trends found at subbasin scale are in good agreement with previous results. The strongest trends are found in the Adriatic basin in both the AW and LIW properties. A subbasin dependent spectral variability emerges in the AW and LIW salinity timeseries with peaks between 2 and 10 years.


Author(s):  
Covadonga Orejas ◽  
Marco Taviani ◽  
Stefano Ambroso ◽  
Vasilis Andreou ◽  
Meri Bilan ◽  
...  

2020 ◽  
Author(s):  
Nicolai Schleinkofer ◽  
Jacek Raddatz ◽  
David Evans ◽  
Axel Gerdes ◽  
Silke Voigt ◽  
...  

&lt;p&gt;Phytoplankton is one of the most important producers of oxygen, and plays an important role in the export of large amounts of carbon to the deeper ocean. Since phytoplankton is also the basis of most food webs in the ocean, understanding the dynamic system of phytoplankton is a crucial part to understand past carbon- and nutrient cycles and paleoclimatic changes. The export of nutrients is also an important factor impacting cold-water coral (CWC) reefs and may play a role in controlling their distribution. Here we present laser ablation inductively coupled mass spectrometer (LA-ICP-MS) Element/Ca measurements from Acesta excavata, a file clam, often associated with cold-water coral reefs along the European continental margin. Environmental parameters were recorded with lander systems directly deployed in the CWC reefs, which allows us to compare our geochemical data to in-situ ocean data.&lt;/p&gt;&lt;p&gt;Our results reveal, that Ba/Ca ratios show stable baseline values with intermittent sharp peaks. The location of these peaks in between major growth lines and temperature reconstructions with Mg/Sr ratios (Schleinkofer et al., submitted) show that these peaks occur during Winter and are repeatable between samples from the same location. This indicates a strong external forcing mechanism and allows cross-dating of different bivalve shells. While the occurrence of Ba/Ca peaks correlates with phytoplankton maxima, the absolute Ba/Ca ratio does not correlate with the phytoplankton abundance.&lt;/p&gt;&lt;p&gt;Mn/Ca ratios show similar trends as Ba/Ca ratios but the peaks are phase shifted and occur slightly delayed. These peaks could be triggered by decreasing oxygen concentrations in the water caused by the decomposition of organic material.&lt;/p&gt;&lt;p&gt;As A. excavata does not show easily distinguishable growth lines under the light microscope despite of Mutvei staining or fluorescence microscopy, we hypothesize that P/Ca ratios might be usable to locate highly phosphorylated shell areas that usually correlate with major growth lines. P/Ca ratios show no perceivable features in the vicinity of major growth lines. Instead we recognize that Ba/Ca peaks follow a minimum in P/Ca which is possibly caused by the uptake of phosphor by plankton.&lt;/p&gt;&lt;p&gt;These results suggest that A. excavata have potential as a promising tool for high resolution paleoenvironmental reconstructions of both intermediate and overlying surface water masses.&lt;/p&gt;&lt;p&gt;References&lt;/p&gt;&lt;p&gt;Schleinkofer N, Raddatz J, Evans D, Gerdes A, Fl&amp;#246;gel S, Voigt S, et al. Elemental to calcium ratios in the marine bivalve Acesta excavata: an archive for high-resolution paleoceanographic reconstructions of intermediate water masses. PLoS One. Submitted&lt;/p&gt;


2015 ◽  
Vol 12 (6) ◽  
pp. 1647-1658 ◽  
Author(s):  
G. Cossarini ◽  
P. Lazzari ◽  
C. Solidoro

Abstract. The paper provides a basin-scale assessment of the spatiotemporal distribution of alkalinity in the Mediterranean Sea. The assessment is made by integrating the available observations into a 3-D transport–biogeochemical model. The results indicate the presence of complex spatial patterns: a marked west-to-east surface gradient of alkalinity is coupled to secondary negative gradients: (1) from marginal seas (Adriatic and Aegean Sea) to the eastern Mediterranean Sea and (2) from north to south in the western region. The west–east gradient is related to the mixing of Atlantic water entering from the Strait of Gibraltar with the high-alkaline water of the eastern sub-basins, which is correlated to the positive surface flux of evaporation minus precipitation. The north-to-south gradients are related to the terrestrial input and to the input of the Black Sea water through the Dardanelles. In the surface layers, alkalinity has a relevant seasonal cycle (up to 40 μmol kg−1) that is driven by physical processes (seasonal cycle of evaporation and vertical mixing) and, to a minor extent, by biological processes. A comparison of alkalinity vs. salinity indicates that different regions present different relationships: in regions of freshwater influence, the two quantities are negatively correlated due to riverine alkalinity input, whereas they are positively correlated in open sea areas of the Mediterranean Sea.


Author(s):  
José L. Rueda ◽  
Javier Urra ◽  
Ricardo Aguilar ◽  
Lorenzo Angeletti ◽  
Marzia Bo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document