Ba/Ca, P/Ca, Li/Ca and Mn/Ca ratios in the deep-sea bivalve Acesta excavata: Valuable tools to reconstruct plankton dynamics in cold-water coral ecosystems?

Author(s):  
Nicolai Schleinkofer ◽  
Jacek Raddatz ◽  
David Evans ◽  
Axel Gerdes ◽  
Silke Voigt ◽  
...  

<p>Phytoplankton is one of the most important producers of oxygen, and plays an important role in the export of large amounts of carbon to the deeper ocean. Since phytoplankton is also the basis of most food webs in the ocean, understanding the dynamic system of phytoplankton is a crucial part to understand past carbon- and nutrient cycles and paleoclimatic changes. The export of nutrients is also an important factor impacting cold-water coral (CWC) reefs and may play a role in controlling their distribution. Here we present laser ablation inductively coupled mass spectrometer (LA-ICP-MS) Element/Ca measurements from Acesta excavata, a file clam, often associated with cold-water coral reefs along the European continental margin. Environmental parameters were recorded with lander systems directly deployed in the CWC reefs, which allows us to compare our geochemical data to in-situ ocean data.</p><p>Our results reveal, that Ba/Ca ratios show stable baseline values with intermittent sharp peaks. The location of these peaks in between major growth lines and temperature reconstructions with Mg/Sr ratios (Schleinkofer et al., submitted) show that these peaks occur during Winter and are repeatable between samples from the same location. This indicates a strong external forcing mechanism and allows cross-dating of different bivalve shells. While the occurrence of Ba/Ca peaks correlates with phytoplankton maxima, the absolute Ba/Ca ratio does not correlate with the phytoplankton abundance.</p><p>Mn/Ca ratios show similar trends as Ba/Ca ratios but the peaks are phase shifted and occur slightly delayed. These peaks could be triggered by decreasing oxygen concentrations in the water caused by the decomposition of organic material.</p><p>As A. excavata does not show easily distinguishable growth lines under the light microscope despite of Mutvei staining or fluorescence microscopy, we hypothesize that P/Ca ratios might be usable to locate highly phosphorylated shell areas that usually correlate with major growth lines. P/Ca ratios show no perceivable features in the vicinity of major growth lines. Instead we recognize that Ba/Ca peaks follow a minimum in P/Ca which is possibly caused by the uptake of phosphor by plankton.</p><p>These results suggest that A. excavata have potential as a promising tool for high resolution paleoenvironmental reconstructions of both intermediate and overlying surface water masses.</p><p>References</p><p>Schleinkofer N, Raddatz J, Evans D, Gerdes A, Flögel S, Voigt S, et al. Elemental to calcium ratios in the marine bivalve Acesta excavata: an archive for high-resolution paleoceanographic reconstructions of intermediate water masses. PLoS One. Submitted</p>

2022 ◽  
Author(s):  
Robin Fentimen ◽  
Eline Feenstra ◽  
Andres Rüggeberg ◽  
Efraim Hall ◽  
Valentin Rime ◽  
...  

Abstract. This study provides a detailed reconstruction of cold-water coral mound build-up within the East Melilla Coral Province (Southeast Alboran Sea) over the last 300 ky. Based on benthic foraminiferal assemblages, macrofaunal quantification, grain size analysis, sediment geochemistry, and foraminiferal stable isotope compositions, a reconstruction of environmental conditions having prevailed in the region is proposed. The variations in planktonic and benthic δ18O values indicate that cold-water coral mound build-up follows and records global climate variability. In contrast to northeast Atlantic counterparts, coral mound build-up in the southeast Alboran Sea occurs during glacial as well as during interglacial periods and at very low aggradation rates (between 1 and 10 cm.ky−1). Environmental conditions during glacial periods, particularly during the Last Glacial Maximum, appear to better suit the ecological requirements of the erect cheilostome bryozoan Buskea dichotoma. We propose that Buskea dichotoma has an important role in the build-up of cold-water coral mounds at the East Melilla Coral Province during glacial periods. Benthic foraminiferal assemblages suggest that important terrestrial input favoured cold-water coral proliferation during interglacial periods. The existence of strong Alboran Gyres during interglacial periods, promoting mixing between surface and intermediate water masses and bottom water turbulence, was possibly beneficial for cold-water coral development. Conversely, benthic foraminiferal assemblages indicate that the seafloor received less organic matter during glacial periods. Overall, the arid continental conditions combined to more stratified water masses resulted in limited coral proliferation during glacial times.


2014 ◽  
Vol 122 ◽  
pp. 92-104 ◽  
Author(s):  
Christian Mohn ◽  
Anna Rengstorf ◽  
Martin White ◽  
Gerard Duineveld ◽  
Furu Mienis ◽  
...  

2013 ◽  
Vol 375 ◽  
pp. 176-187 ◽  
Author(s):  
Mélanie Douarin ◽  
Mary Elliot ◽  
Stephen R. Noble ◽  
Daniel Sinclair ◽  
Lea-Anne Henry ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Andreu Santín ◽  
Jordi Grinyó ◽  
Maria Jesús Uriz ◽  
Claudio Lo Iacono ◽  
Josep Maria Gili ◽  
...  

Cold-water coral reefs (CWC) are known to be biodiversity hotspots, however, the sponge assemblages found to dwell within these habitats haven not been studied in depth to date in the Mediterranean Sea. The present article provides the first insight on the associated sponge fauna of the recently discovered CWC communities on the Catalan Margin and, to a lesser extent, the Cabliers Coral Mound Province, while also reviewing the current knowledge of the sponge fauna dwelling in all the Mediterranean CWC provinces. In regards to the studied areas, some rare species are cited for the first time in the Mediterranean or redescribed, while two of them, Hamacantha (Hamacantha) hortae sp. nov. and Spongosorites cabliersi sp. nov. are new to science. At a basin scale, Mediterranean CWC appear as poriferan biodiversity hotspots, yet current diversity values on each site rather represent a small fraction of its actual fauna. Additionally, the existence of an endemic sponge fauna exclusively dwelling on CWC is refuted. Nonetheless, the sponge fauna thriving in Mediterranean CWC appears to be unique, and different from that of other Atlantic regions. Finally, with the current knowledge, the sponge fauna from the Mediterranean CWC is grouped in three distinguishable clusters (Alboran Sea, Western and Eastern Mediterranean), which appears to be determined by the basins water circulation, specially the Levantine Intermediate Water and the Atlantic Water following a western-eastern pattern from the Strait of Gibraltar to the Adriatic Sea. Overall, sponge living in Mediterranean CWC are still poorly explored in most areas, yet they appear to be good candidates for biogeographical studies.Zoobank Registration: LSID urn:lsid:zoobank.org:pub:E58A3DFF-EDC5-44FC-A274-1C9508BF8D15.


2020 ◽  
Author(s):  
Robin Fentimen ◽  
Eline Feenstra ◽  
Andres Rüggeberg ◽  
Efraim Hall ◽  
Valentin Rime ◽  
...  

Abstract. This study provides a detailed reconstruction of climatic events affecting a cold-water coral mound located within the East Melilla Coral Province (Southeast Alboran Sea) over the last 300 ky. Based on benthic foraminiferal assemblages, macrofaunal quantification, grain size analysis, sediment geochemistry, and foraminiferal stable isotope compositions, a reconstruction of environmental conditions prevailing in the region is proposed. The variations in planktonic and benthic δ18O values indicate that cold-water coral mound formation follows global climatic variability. Cold-water corals develop during both interglacial and glacial periods, although interglacial conditions would have allowed better proliferation. Environmental conditions during glacial periods, particularly during the Last Glacial Maximum, appear to better suit the ecological requirements of the erect cheilostome bryozoan Buskea dichotoma. Benthic foraminiferal assemblages suggest that high organic carbon flux characterized interglacial periods. Results from this study imply that increased influence of warm and moist Atlantic air masses during interglacial periods led to increased fluvial discharge, providing nutrients for cold-water corals. Important interglacial Atlantic Water mass inflow further promoted strong Alboran Gyres, and thus mixing between surface and intermediate water masses. Increased turbulence and nutrient supply would have hence provided suitable conditions for coral development. In contrast, benthic foraminiferal assemblages and grain size distributions suggest that the benthic environment received less organic matter during glacial periods, whilst bottom flow velocity was reduced in comparison to interglacial periods. During glacial periods, arid continental conditions combined to more stratified water masses caused a dwindling of coral communities in the southeastern Alboran Sea, although aeolian dust input may have allowed these to survive. In contrast to Northeast Atlantic counterparts, coral mound build-up in the southeastern Alboran Sea occurs during glacial as well as during interglacial periods and at very low aggradation rates (between 1 and 9 cm ky−1). We propose that Buskea dichotoma plays an important role in long-term mound formation at the East Melilla Coral Province, noticeably during glacial periods.


Sign in / Sign up

Export Citation Format

Share Document