scholarly journals Preoperative Concentrated Urine Increases the Incidence of Plasma Creatinine Elevation After Major Surgery

2021 ◽  
Vol 8 ◽  
Author(s):  
Dominique Engel ◽  
Lukas M. Löffel ◽  
Patrick Y. Wuethrich ◽  
Robert G. Hahn

Background: Postoperative elevation of plasma creatinine is a frequent complication to major surgery. A rise by 50% fulfills the criterion for Acute Kidney Injury. We studied the relationship between concentrated urine before surgery, which is usually a sign of chronically low intake of water, and the perioperative change in plasma creatinine.Methods: The creatinine concentration was measured in plasma and urine just before and at 6 h, 1 day, and 2 days after major abdominal surgery in a consecutive series of 181 patients. Receiver operating curve analysis was used to find the optimal cut-off to separate concentrated from diluted urine.Results: Urine creatinine of 11.3 mmol/L before the surgery started was exceeded in one third of the patients and associated with greater increase in plasma creatinine at 6 h (median 21 vs. 10%) and at 1 day postoperatively (21 vs. 7%; P < 0.0001). Elevation of plasma creatinine of >25% occurred in 41% and 19% in those with high and low urine creatinine, respectively (P < 0.001) and an increase by >50% in 16% and 10% (P = 0.27). Patients with high urine creatinine before surgery failed to further concentrate their urine during the perioperative period, which is normally associated with intensified renal fluid conservation.Conclusion: High urinary concentration of creatinine before surgery should be considered as a risk factor for postoperative elevation of plasma creatinine. The mechanism is probably that the renal threshold is then more easily reached.

2021 ◽  
pp. ASN.2021010094
Author(s):  
Jason H. Greenberg ◽  
Alison G. Abraham ◽  
Yunwen Xu ◽  
Jeffrey R. Schelling ◽  
Harold I. Feldman ◽  
...  

BackgroundNovel urine biomarkers may improve identification of children at greater risk of rapid kidney function decline, and elucidate the pathophysiology of CKD progression.MethodsWe investigated the relationship between urine biomarkers of kidney tubular health (EGF and α-1 microglobulin), tubular injury (kidney injury molecule-1; KIM-1), and inflammation (monocyte chemoattractant protein-1 [MCP-1] and YKL-40) and CKD progression. The prospective CKD in Children Study enrolled children aged 6 months to 16 years with an eGFR of 30–90ml/min per 1.73m2. Urine biomarkers were assayed a median of 5 months [IQR: 4–7] after study enrollment. We indexed the biomarker to urine creatinine by dividing the urine biomarker concentration by the urine creatinine concentration to account for the concentration of the urine. The primary outcome was CKD progression (a composite of a 50% decline in eGFR or kidney failure) during the follow-up period.ResultsOverall, 252 of 665 children (38%) reached the composite outcome over a median follow-up of 6.5 years. After adjustment for covariates, children with urine EGF concentrations in the lowest quartile were at a seven-fold higher risk of CKD progression versus those with concentrations in the highest quartile (fully adjusted hazard ratio [aHR], 7.1; 95% confidence interval [95% CI], 3.9 to 20.0). Children with urine KIM-1, MCP-1, and α-1 microglobulin concentrations in the highest quartile were also at significantly higher risk of CKD progression versus those with biomarker concentrations in the lowest quartile. Addition of the five biomarkers to a clinical model increased the discrimination and reclassification for CKD progression.ConclusionsAfter multivariable adjustment, a lower urine EGF concentration and higher urine KIM-1, MCP-1, and α-1 microglobulin concentrations were each associated with CKD progression in children.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
John W. Pickering ◽  
John Mellas

In acute kidney injury (AKI), elevated plasma creatinine is diagnostic of an earlier loss of glomerular filtration rate (GFR) but not of the concomitant GFR. Only subsequent creatinine changes will inform if GFR had already recovered or not. We hypothesized that the creatinine excretion rate to production rate ratio would provide this information. A retrospective analysis of 482 critically ill patients from two intensive care units (ICU) is shown. Plasma creatinine was measured on ICU entry and 12 hours later. Four-hour creatinine excretion rates (E) were measured on entry. Creatinine production rates were estimated (eG). The ability of the ratioE/eGto predict a decrease in plasma creatinine concentration, identify recovered AKI (≥0.3 mg/dL decrease), and predict AKI (≥0.3 mg/dL increase) was assessed by the area under the receiver operator characteristic curves (AUC). There was a linear relationship between reduced creatinine concentration andE/eG(r2=0.15;P<0.0001).E/eGpredicted a decrease in creatinine (AUC 0.70 (0.65 to 0.74)), identified recovered AKI (0.75 (0.67 to 0.84)), and predicted AKI (0.80 (0.73 to 0.86)). A ratio of the rates of creatinine excretion to estimated production much less than 1 indicated a concomitant GFR below baseline, whereas a ratio much more than 1 indicated a recovering or recovered GFR.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251718
Author(s):  
Laurence Weinberg ◽  
Michael Hua-Gen Li ◽  
Leonid Churilov ◽  
Christopher Macgregor ◽  
Kent Garrett ◽  
...  

Objectives Saline and Plasma-Lyte have different physiochemical contents; consequently, they may differently affect patients’ renal function. We compared the effects of fluid therapy with 0.9% saline and with Plasma-Lyte 148 on renal function as assessed by creatinine concentration among patients undergoing major surgery. Methods We conducted a prospective, double-blinded cluster crossover trial comparing the effects of the two fluids on major surgery patients. The primary aim was to establish the pilot feasibility, safety and preliminary efficacy evidence base for a large interventional trial to establish whether saline or Plasma-Lyte is the preferred crystalloid fluid for managing major surgery patients. The primary efficacy outcome was the proportion of patients with changes in renal function as assessed by creatinine concentration during their index hospital admission. We used changes in creatinine to define acute kidney injury (AKI) according to the RIFLE criteria. Results The study was feasible with 100% patient and clinician acceptance. There were no deviations from the trial protocol. After screening, we allocated 602 patients to saline and 458 to Plasma-Lyte. The median (IQR) volume of intraoperative fluid received was 2000 mL (1000:2000) in both groups. Forty-nine saline patients (8.1%) and 49 Plasma-Lyte patients (10.7%) developed a postoperative AKI (adjusted incidence rate ratio [aIRR]: 1.34; 95% CI: 0.93–1.95; p = 0.120). No differences were observed in the development of postoperative complications (aIRR: 0.98; 95% CI: 0.89–1.08) or the severity of the worst complication (aIRR: 1.00; 95% CI: 0.78–1.30). The median (IQR) length of hospital stay was six days (3:11) for the saline group and five days (3:10) for the Plasma-Lyte group (aIRR: 0.85; 95% CI: 0.73–0.98). There were no serious adverse events relating to the trial fluids, nor were there fluid crossover or contamination events. Conclusions The study design was feasible to support a future follow-up larger clinical trial. Patients treated with saline did not demonstrate an increased incidence of postoperative AKI (defined as changes in creatinine) compared to those treated with Plasma-Lyte. Our findings imply that clinicians can reasonably use either solution intraoperatively for adult patients undergoing major surgery. Trial registration Registry: Australian New Zealand Clinical Trials Registry; ACTRN12613001042730; URL: https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=364988.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Gianluca Villa ◽  
Silvia De Rosa ◽  
Caterina Scirè Calabrisotto ◽  
Alessandro Nerini ◽  
Thomas Saitta ◽  
...  

Abstract Background Postoperative acute kidney injury (PO-AKI) is a leading cause of short- and long-term morbidity and mortality, as well as progression to chronic kidney disease (CKD). The aim of this study was to explore the physicians’ attitude toward the use of perioperative serum creatinine (sCr) for the identification of patients at risk for PO-AKI and long-term CKD. We also evaluated the incidence and risk factors associated with PO-AKI and renal function deterioration in patients undergoing major surgery for malignant disease. Methods Adult oncological patients who underwent major abdominal surgery from November 2016 to February 2017 were considered for this single-centre, observational retrospective study. Routinely available sCr values were used to define AKI in the first three postoperative days. Long-term kidney dysfunction (LT-KDys) was defined as a reduction in the estimated glomerular filtration rate by more than 10 ml/min/m2 at 12 months postoperatively. A questionnaire was administered to 125 physicians caring for the enrolled patients to collect information on local attitudes regarding the use of sCr perioperatively and its relationship with PO-AKI. Results A total of 423 patients were observed. sCr was not available in 59 patients (13.9%); the remaining 364 (86.1%) had at least one sCr value measured to allow for detection of postoperative kidney impairment. Among these, PO-AKI was diagnosed in 8.2% of cases. Of the 334 patients who had a sCr result available at 12-month follow-up, 56 (16.8%) developed LT-KDys. Data on long-term kidney function were not available for 21% of patients. Interestingly, 33 of 423 patients (7.8%) did not have a sCr result available in the immediate postoperative period or long term. All the physicians who participated in the survey (83 out of 125) recognised that postoperative assessment of sCr is required after major oncological abdominal surgery, particularly in those patients at high risk for PO-AKI and LT-KDys. Conclusion PO-AKI after major surgery for malignant disease is common, but clinical practice of measuring sCr is variable. As a result, the exact incidence of PO-AKI and long-term renal prognosis are unclear, including in high-risk patients. Trial registration ClinicalTrials.gov, NCT04341974.


Author(s):  
John R. Prowle ◽  
Lui G. Forni ◽  
Max Bell ◽  
Michelle S. Chew ◽  
Mark Edwards ◽  
...  

AbstractPostoperative acute kidney injury (PO-AKI) is a common complication of major surgery that is strongly associated with short-term surgical complications and long-term adverse outcomes, including increased risk of chronic kidney disease, cardiovascular events and death. Risk factors for PO-AKI include older age and comorbid diseases such as chronic kidney disease and diabetes mellitus. PO-AKI is best defined as AKI occurring within 7 days of an operative intervention using the Kidney Disease Improving Global Outcomes (KDIGO) definition of AKI; however, additional prognostic information may be gained from detailed clinical assessment and other diagnostic investigations in the form of a focused kidney health assessment (KHA). Prevention of PO-AKI is largely based on identification of high baseline risk, monitoring and reduction of nephrotoxic insults, whereas treatment involves the application of a bundle of interventions to avoid secondary kidney injury and mitigate the severity of AKI. As PO-AKI is strongly associated with long-term adverse outcomes, some form of follow-up KHA is essential; however, the form and location of this will be dictated by the nature and severity of the AKI. In this Consensus Statement, we provide graded recommendations for AKI after non-cardiac surgery and highlight priorities for future research.


2021 ◽  
Vol 22 (4) ◽  
pp. 1762
Author(s):  
Soisungwan Satarug ◽  
David A. Vesey ◽  
Muneko Nishijo ◽  
Werawan Ruangyuttikarn ◽  
Glenda C. Gobe ◽  
...  

Erroneous conclusions may result from normalization of urine cadmium and N-acetyl-β-D-glucosaminidase concentrations ([Cd]u and [NAG]u) to the urine creatinine concentration ([cr]u). In theory, the sources of these errors are nullified by normalization of excretion rates (ECd and ENAG) to creatinine clearance (Ccr). We hypothesized that this alternate approach would clarify the contribution of Cd-induced tubular injury to nephron loss. We studied 931 Thai subjects with a wide range of environmental Cd exposure. For x = Cd or NAG, Ex/Ecr and Ex/Ccr were calculated as [x]u/[cr]u and [x]u[cr]p/[cr]u, respectively. Glomerular filtration rate (GFR) was estimated according to the Chronic Kidney Disease (CKD) Epidemiology Collaboration (eGFR), and CKD was defined as eGFR < 60 mL/min/1.73m2. In multivariable logistic regression analyses, prevalence odds ratios (PORs) for CKD were higher for log(ECd/Ccr) and log(ENAG/Ccr) than for log(ECd/Ecr) and log(ENAG/Ecr). Doubling of ECd/Ccr and ENAG/Ccr increased POR by 132% and 168%; doubling of ECd/Ecr and ENAG/Ecr increased POR by 64% and 54%. As log(ECd/Ccr) rose, associations of eGFR with log(ECd/Ccr) and log(ENAG/Ccr) became stronger, while associations of eGFR with log(ECd/Ecr) and log(ENAG/Ecr) became insignificant. In univariate regressions of eGFR on each of these logarithmic variables, R2 was consistently higher with normalization to Ccr. Our tabular and graphic analyses uniformly indicate that normalization to Ccr clarified relationships of ECd and ENAG to eGFR.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Nicole A. M. Dekker ◽  
Anoek L. I. van Leeuwen ◽  
Matijs van Meurs ◽  
Jill Moser ◽  
Jeannette E. Pankras ◽  
...  

Abstract Background Acute kidney injury is a severe complication following cardiopulmonary bypass (CPB) and is associated with capillary leakage and microcirculatory perfusion disturbances. CPB-induced thrombin release results in capillary hyperpermeability via activation of protease-activated receptor 1 (PAR1). We investigated whether aprotinin, which is thought to prevent thrombin from activating PAR1, preserves renal endothelial structure, reduces renal edema and preserves renal perfusion and reduces renal injury following CPB. Methods Rats were subjected to CPB after treatment with 33.000 KIU/kg aprotinin (n = 15) or PBS (n = 15) as control. A secondary dose of 33.000 KIU/kg aprotinin was given 60 min after initiation of CPB. Cremaster and renal microcirculatory perfusion were assessed using intravital microscopy and contrast echography before CPB and 10 and 60 min after weaning from CPB. Renal edema was determined by wet/dry weight ratio and renal endothelial structure by electron microscopy. Renal PAR1 gene and protein expression and markers of renal injury were determined. Results CPB reduced cremaster microcirculatory perfusion by 2.5-fold (15 (10–16) to 6 (2–10) perfused microvessels, p < 0.0001) and renal perfusion by 1.6-fold (202 (67–599) to 129 (31–292) au/sec, p = 0.03) in control animals. Both did not restore 60 min post-CPB. This was paralleled by increased plasma creatinine (p < 0.01), neutrophil gelatinase-associated lipocalin (NGAL; p = 0.003) and kidney injury molecule-1 (KIM-1; p < 0.01). Aprotinin treatment preserved cremaster microcirculatory perfusion following CPB (12 (7–15) vs. 6 (2–10) perfused microvessels, p = 0.002), but not renal perfusion (96 (35–313) vs. 129 (31–292) au/s, p > 0.9) compared to untreated rats. Aprotinin treatment reduced endothelial gap formation (0.5 ± 0.5 vs. 3.1 ± 1.4 gaps, p < 0.0001), kidney wet/dry weight ratio (4.6 ± 0.2 vs. 4.4 ± 0.2, p = 0.046), and fluid requirements (3.9 ± 3.3 vs. 7.5 ± 3.0 ml, p = 0.006) compared to untreated rats. In addition, aprotinin treatment reduced tubulointerstitial neutrophil influx by 1.7-fold compared to untreated rats (30.7 ± 22.1 vs. 53.2 ± 17.2 neutrophil influx/section, p = 0.009). No differences were observed in renal PAR1 expression and plasma creatinine, NGAL or KIM-1 between groups. Conclusions Aprotinin did not improve renal perfusion nor reduce renal injury during the first hour following experimental CPB despite preservation of renal endothelial integrity and reduction of renal edema.


Sign in / Sign up

Export Citation Format

Share Document