scholarly journals Evaluation of Macular and Retinal Ganglion Cell Count Estimates for Detecting and Staging Glaucoma

2021 ◽  
Vol 8 ◽  
Author(s):  
Yali Wu ◽  
Qing Cun ◽  
Yijin Tao ◽  
Wenyan Yang ◽  
Jia Wei ◽  
...  

Purpose: To investigate the clinical significance of macular estimated retinal ganglion cell (mRGC) and estimated retinal ganglion cell (eRGC) in the diagnosis and staging of glaucoma.Methods: This is a cross-section study. All enrolled subjects underwent standard automated perimetry (SAP) and optical coherence tomography (OCT) examination. Swedish Interactive Threshold Algorithm (SITA)-FAST detection strategy and 24-2, 10-2 detection programs were employed in SAP assessment. The visual-field parameters and OCT parameters were calculated according to three formulas to obtain the eRGC and mRGC1 or mRGC2. The efficiency of eRGC, mRGC1, and mRGC2 estimates for the staging of glaucoma was compared. The sensitivity and specificity of each parameter for diagnosis of glaucoma were analyzed using the receiver operating characteristic (ROC) curve.Results: A total of 119 eyes were included in the analysis. Compared with the healthy controls, eRGC, mRGC1, and mRGC2 estimates were significantly decreased in patients with glaucoma. As glaucoma progressed, eRGC, mRGC1, and mRGC2 estimates were gradually reduced. In preperimetric glaucoma, mRGC1, mRGC2, and eRGC were reduced by 13.2, 14.5, and 18%, respectively. In the mild stage of glaucoma, mRGC1, mRGC2, and eRGC were reduced by 28, 34, and 38%, respectively. In the advanced stage of glaucoma, mRGC1, mRGC2, and eRGC were reduced by 81, 85, and 92% respectively. The proportion of retinal ganglion cell (RGC) loss in the macula was close to that outside the macula. The specificity at 95% gave a sensitivity of 95.51, 86.52, and 87.64% for eRGC, mRGC1, and mRGC2, respectively. The sensitivity of structural parameters macular ganglion cell complex thickness and retinal nerve fiber layer (RNFL) were 98.88 and 95.51%, respectively. The sensitivity of functional parameters mean deviation (24-2) and visual field index (VFI) were 80.90 and 73.03%, respectively. The area under ROC curve of mRGC1, mRGC2, and eRGC were 0.982, 0.972, and 0.995 (P < 0.0001), respectively.Conclusion: Estimated retinal ganglion cell, mRGC1, and mRGC2 provide value to the staging of glaucoma and better diagnostic performance. Macular RGC estimatesthat integration of both structural and functional damages in macular may serve as a sensitive indicator for assessing macular damage in glaucoma and are of importance for the diagnosis and progression management of glaucoma.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexandru Lavric ◽  
Valentin Popa ◽  
Hidenori Takahashi ◽  
Rossen M. Hazarbassanov ◽  
Siamak Yousefi

AbstractThe main goal of this study is to identify the association between corneal shape, elevation, and thickness parameters and visual field damage using machine learning. A total of 676 eyes from 568 patients from the Jichi Medical University in Japan were included in this study. Corneal topography, pachymetry, and elevation images were obtained using anterior segment optical coherence tomography (OCT) and visual field tests were collected using standard automated perimetry with 24-2 Swedish Interactive Threshold Algorithm. The association between corneal structural parameters and visual field damage was investigated using machine learning and evaluated through tenfold cross-validation of the area under the receiver operating characteristic curves (AUC). The average mean deviation was − 8.0 dB and the average central corneal thickness (CCT) was 513.1 µm. Using ensemble machine learning bagged trees classifiers, we detected visual field abnormality from corneal parameters with an AUC of 0.83. Using a tree-based machine learning classifier, we detected four visual field severity levels from corneal parameters with an AUC of 0.74. Although CCT and corneal hysteresis have long been accepted as predictors of glaucoma development and future visual field loss, corneal shape and elevation parameters may also predict glaucoma-induced visual functional loss.


2014 ◽  
Vol 55 (10) ◽  
pp. 6505 ◽  
Author(s):  
Gustavo C. Munguba ◽  
Sanja Galeb ◽  
Yuan Liu ◽  
David C. Landy ◽  
Daisy Lam ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Pierre-Maxime Lévêque ◽  
Pierre Zéboulon ◽  
Emmanuelle Brasnu ◽  
Christophe Baudouin ◽  
Antoine Labbé

Purpose. To detect changes in optic nerve head (ONH) vascularization in glaucoma patients using spectral-domain OCT angiography (OCT-A).Material and Method. Fifty glaucoma patients and 30 normal subjects were evaluated with OCT-A (AngioVue®, Optovue). The total ONH vessel density and temporal disc vessel density were measured. Clinical data, visual field (VF) parameters, and spectral-domain OCT evaluation (RNFL: retinal nerve fiber layer thickness, GCC: ganglion cell complex thickness, and rim area) were recorded for glaucoma patients. Correlations among total and temporal ONH vessel density and structural and VF parameters were analyzed.Results. In the glaucoma group, total and temporal ONH vessel density were reduced by 24.7% (0.412 versus 0.547;p<0.0001) and 22.88% (0.364 versus 0.472;p=0.001), respectively, as compared with the control group. Univariate analysis showed significant correlation between rim area (mm2) and temporal ONH vessel density (r=0.623;p<0.0001) and total ONH vessel density (r=0.609;p<0.0001). Significant correlations were found between temporal and total ONH vessel density and RNFL, GCC, VF mean deviation, and visual field index.Conclusion. In glaucoma patients OCT-A might detect reduced ONH blood vessel density that is associated with structural and functional glaucomatous damage. OCT-A might become a useful tool for the evaluation of ONH microcirculation changes in glaucoma.


2012 ◽  
Vol 4 (2) ◽  
pp. 236-241
Author(s):  
S Ganekal

Objective: To compare the macular ganglion cell complex (GCC) with peripapillary retinal fiber layer (RNFL) thickness map in glaucoma suspects and patients. Subjects and methods: Forty participants (20 glaucoma suspects and 20 glaucoma patients) were enrolled. Macular GCC and RNFL thickness maps were performed in both eyes of each participant in the same visit. The sensitivity and specificity of a color code less than 5% (red or yellow) for glaucoma diagnosis were calculated. Standard Automated Perimetry was performed with the Octopus 3.1.1 Dynamic 24-2 program. Statistics: The statistical analysis was performed with the SPSS 10.1 (SPSS Inc. Chicago, IL, EUA). Results were expressed as mean ± standard deviation and a p value of 0.05 or less was considered significant. Results: Provide absolute numbers of these findings with their units of measurement. There was a statistically significant difference in average RNFL thickness (p=0.004), superior RNFL thickness (p=0.006), inferior RNFL thickness (p=0.0005) and average GCC (p=0.03) between the suspects and glaucoma patients. There was no difference in optic disc area (p=0.35) and vertical cup/disc ratio (p=0.234) in both groups. While 38% eyes had an abnormal GCC and 13% had an abnormal RNFL thickness in the glaucoma suspect group, 98% had an abnormal GCC and 90% had an abnormal RNFL thickness in the glaucoma group.Conclusion: The ability to diagnose glaucoma with macular GCC thickness is comparable to that with peripapillary RNFL thickness. Macular GCC thickness measurements may be a good alternative or a complementary measurement to RNFL thickness assessment in the clinical evaluation of glaucoma.DOI: http://dx.doi.org/10.3126/nepjoph.v4i2.6538 Nepal J Ophthalmol 2012; 4 (2): 236-241 


Author(s):  
Tian Wang ◽  
Yiming Li ◽  
Miao Guo ◽  
Xue Dong ◽  
Mengyu Liao ◽  
...  

Traumatic optic neuropathy (TON) refers to optic nerve damage caused by trauma, leading to partial or complete loss of vision. The primary treatment options, such as hormonal therapy and surgery, have limited efficacy. Pituitary adenylate cyclase-activating polypeptide 38 (PACAP38), a functional endogenous neuroprotective peptide, has emerged as a promising therapeutic agent. In this study, we used rat retinal ganglion cell (RGC) exosomes as nanosized vesicles for the delivery of PACAP38 loaded via the exosomal anchor peptide CP05 (EXOPACAP38). EXOPACAP38 showed greater uptake efficiency in vitro and in vivo than PACAP38. The results showed that EXOPACAP38 significantly enhanced the RGC survival rate and retinal nerve fiber layer thickness in a rat TON model. Moreover, EXOPACAP38 significantly promoted axon regeneration and optic nerve function after injury. These findings indicate that EXOPACAP38 can be used as a treatment option and may have therapeutic implications for patients with TON.


Sign in / Sign up

Export Citation Format

Share Document