scholarly journals Antibacterial Activity and Synergistic Antibacterial Potential of Biosynthesized Silver Nanoparticles against Foodborne Pathogenic Bacteria along with its Anticandidal and Antioxidant Effects

2017 ◽  
Vol 08 ◽  
Author(s):  
Jayanta Kumar Patra ◽  
Kwang-Hyun Baek
Author(s):  
Sara Adel Amer ◽  
Hala Mohamed Abushady ◽  
Rasha Mohamed Refay ◽  
Mahmoud Ahmed Mailam

Abstract Background Bacteriocins are proteinaceous compounds produced from lactic acid bacteria. Bacteriocins are well-known for their antibacterial potential and safety for application in food. However, the commercial availability of bacteriocin is facing several limitations; among them is the low yield and short stability period. That calls for a new strategy for overcoming these hurdles. Among these approaches is incorporating bacteriocin in nanoparticles. So, the aim of this study was to enhance the plantaricin produced from isolated Lactobacillus plantarum strain using nanotechnology. Results In this study, the plnEF genes encoding plantaricin EF have been identified and sequenced (accession number of MN172264.1). The extracted bacteriocin (EX-PL) was obtained by the ammonium sulfate method. Then, it was used for biosynthesizing plantaricin-incorporated silver nanoparticles (PL-SNPs). The synthesized nanoparticles were confirmed by SEM-EDAX analysis. The antibacterial activity of both combined (PL-SNPs) and extracted plantaricin (EX-PL) were tested against some strains of foodborne pathogenic bacteria. The results revealed that the antibacterial activities were increased by 99.2% on the combination of bacteriocin with the silver nanoparticle. The MIC of EX-PL (7.6 mg/mL) has been lowered after incorporating into silver nanoparticles and reached 0.004 mg/mL for PL-SNPs. Despite that extracted plantaricin showed no inhibitory activity towards Listeria monocytogenes, plantaricin-incorporated silver nanoparticles displayed inhibitory activity against this strain. Furthermore, the stability period at 4 °C was increased from 5 days to 60 days for EX-PL and PL-SNPs, respectively. Conclusions Plantaricin-incorporated silver nanoparticles possess higher antibacterial activity and more stability than the free one, which makes it more fitting for combating foodborne pathogens and open more fields for applications in both food and pharmaceutical industries. Graphical abstract


2020 ◽  
Vol 9 (1) ◽  
pp. 203-211 ◽  
Author(s):  
Shabana Wagi ◽  
Ambreen Ahmed

AbstractAntibiotics are the chemicals responsible for killing pathogenic bacteria but inappropriate and extensive use of antibiotics is hazardous causing adverse impact on human health. Excessive use of antibiotics has led to the development of multiple-drug resistant bacteria posing health hazards to mankind. The study of nanoparticles has revolutionized the problem solving concerns regarding fields of agriculture, chemistry and medicine. Nanoparticles are smaller than atomic nuclei offering more surface area and greater reactivity. Bacterial silver nanoparticles (AgNPs) were studied for their antibacterial potential. AgNPs from Bacillus subtilus show the highest antibacterial activity. Nanoparticles exhibiting antibacterial activity can be helpful to reduce the toxic impact of synthetic antibiotics. Present work deals with the green production of silver nanoparticles by exploiting indigenous bacteria. These AgNPs were characterized through Fourier transform infrared spectroscopic (FTIR) analysis, transmission electron microscopy (TEM) and UV spectroscopic analysis and were also evaluated for their antibacterial and antifungal potential. The data suggested the extracellular biosynthesis method to be very effective for the biosynthesis of AgNPs in some bacterial strains. Keeping in view the antibacterial potential of studied AgNPs, the present work suggests green production of nanoparticles which can be effectively utilized as environment friendly antibacterial and antifungal agents.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
M. Jannathul Firdhouse ◽  
P. Lalitha

Silver nanoparticles prepared through a simplistic method using the aqueous extract ofAmaranthus dubiuswere fabricated on perspiration pads and cotton cloth samples to obtain antibacterial textile materials by two different fabrication methods. The antibacterial activity was investigated against the bacteriaCorynebacteriumwhich is commonly present in sweat. Silver nanoparticles that serve as antibacterial agents, against pathogenic bacteria, have gained increased applications in medical devices, textile fabrics, and food industry and hence the result of this study would be a welcomed option.


2010 ◽  
Vol 28 (1) ◽  
pp. 52 ◽  
Author(s):  
Maya George ◽  
Gisha George ◽  
A. A. Mohamed Hatha

Diversity of soil actinomycetes isolated from various regions of a wetland was analysed. The strains were assigned under 11 genera according to their morphological and biochemical characteristics. They are: Nocardia, Pseudonocardia, Streptomyces, Micromonospora, Rhodococcus, Actinosynnema, Nocardiodes, Kitasatospora, Gordona, Intrasporangium and Streptoalloteichus. Around 55% of the identified strains are Nocardioform actinomycetes. Screening for their antibacterial activities revealed that 96% of the isolated strains showed different degrees of inhibition potential against 12 test pathogenic bacteria (including various serotypes of Salmonella, Vibrio cholerae, Bacillus subtilis and Escherichia coli). Of these about 41% of strains showed antagonism towards Bacillus subtilis. The Nocardioform actinomycetes exhibited antibacterial activity against 9 out of 12 test organisms. The least antibacterial potential was exhibited by Gordona, Rhodococcus, Micromonospora and Kitasatospora. The isolated strains differed among themselves in their ability to decompose proteins and amino acids and also in enzyme production potential.


2020 ◽  
Vol 11 (1) ◽  
pp. 8110-8120

The present findings were focused on green synthesis of silver nanoparticles through an aqueous extract of Saraca indica. The stability of the nanoparticle was achieved through the optimization of physico-chemical parameters. The sharp UV-visible absorption maximum at 400 was observed for biological synthesized silver nanoparticles. The spectroscopic analysis was thus used to assess the formation of silver nanoparticles. The AFM analysis did analyze the morphology of the nanocomposite, which was further confirmed through TEM micrograph. The electron micrograph image discloses that silver nanoparticles were polydispersed and dominantly as spherical with size ranges from 40nm to 100nm. The average size distribution was 49nm. The chemical reductions of Ag+ ions were further confirmed through FTIR. The biogenic silver nanoparticle and their drug formulation showed profound antibacterial activity against pathogenic bacteria. The flavonoids rich binding of silver nanoparticle showed great medicinal potential and can be used for the treatment of several harmful infectious diseases. Hence, plant-based metal nanoparticles meet the demand for less toxic formulation during drug development and its delivery.


2020 ◽  
pp. 1289-1297
Author(s):  
Ghada Mohammed Saleh

Soil bacteria play an interesting role in the reduction of Ag+ ions and the formation of silver nanoparticles (AgNPs), which may be a good source for nanoparticles and play a major role in nanotechnology applications. The concept of this project was to study the effects of these environmentally produced nanoparticles on the growth of some pathogenic bacteria. The environmental bacteria were isolated from soil, purified on broth cultures, and centrifuged, while the supernatant was extracted to detect its ability to convert silver nitrate to nanoparticles. The AgNPs was detected by Atomic Force Microscopy (AFM), while Granularity Cumulating Distribution (GCD) was employed to estimate the AgNPs sizes. The results showed the synthesis of AgNPs with sizes of 63.50nm and 45.81nm from the extracts of environmental Pseudomonas sp. and Enterobacter, respectively. The synthesized AgNPs from the extracts of all environmental bacteria showed antibacterial activity against some pathogenic bacteria (Gram positive and Negative) with variable inhibition zones. In conclusion, environmental bacteria can be a cheap source of nanoparticles.


RSC Advances ◽  
2018 ◽  
Vol 8 (65) ◽  
pp. 37176-37183 ◽  
Author(s):  
A. K. M. Atique Ullah ◽  
M. F. Kabir ◽  
M. Akter ◽  
A. N. Tamanna ◽  
A. Hossain ◽  
...  

Persuaded by the necessity of finding new sources of antibiotics, Ag NPs were synthesized by adopting a newly developed green synthesis technique and subsequently, their antibacterial activity against different pathogenic bacteria was evaluated.


Sign in / Sign up

Export Citation Format

Share Document