scholarly journals Green synthesis of bio-molecule encapsulated magnetic silver nanoparticles and their antibacterial activity

RSC Advances ◽  
2018 ◽  
Vol 8 (65) ◽  
pp. 37176-37183 ◽  
Author(s):  
A. K. M. Atique Ullah ◽  
M. F. Kabir ◽  
M. Akter ◽  
A. N. Tamanna ◽  
A. Hossain ◽  
...  

Persuaded by the necessity of finding new sources of antibiotics, Ag NPs were synthesized by adopting a newly developed green synthesis technique and subsequently, their antibacterial activity against different pathogenic bacteria was evaluated.

AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Susanna Gevorgyan ◽  
Robin Schubert ◽  
Mkrtich Yeranosyan ◽  
Lilit Gabrielyan ◽  
Armen Trchounian ◽  
...  

AbstractThe application of green synthesis in nanotechnology is growing day by day. It’s a safe and eco-friendly alternative to conventional methods. The current research aimed to study raw royal jelly’s potential in the green synthesis of silver nanoparticles and their antibacterial activity. Royal jelly served as a reducing and oxidizing agent in the green synthesis technology of colloidal silver nanoparticles. The UV–Vis maximum absorption at ~ 430 nm and fluorescence emission peaks at ~ 487 nm confirmed the presence of Ag NPs. Morphology and structural properties of Ag NPs and the effect of ultrasound studies revealed: (i) the formation of polydispersed and spherical particles with different sizes; (ii) size reduction and homogeneity increase by ultrasound treatment. Antibacterial activity of different concentrations of green synthesized Ag NPs has been assessed on Gram-negative S. typhimurium and Gram-positive S. aureus, revealing higher sensitivity on Gram-negative bacteria.


2016 ◽  
Author(s):  
Patcharaporn Tippayawat ◽  
Nutthakritta Phromviyo ◽  
Parichart Boueroy ◽  
Apiwat Chompoosor

Background: There is worldwide interest in silver nanoparticles (AgNPs) synthesized by various chemical reactions for use in applications exploiting their antibacterial activity, even though these processes exhibit a broad range of toxicity in vertebrates and invertebrates alike. To avoid the chemical toxicity, biosynthesis (green synthesis) of metal nanoparticles is proposed as a cost-effective and environmental friendly alternative. Aloe vera leaf extract is a medicinal agent with multiple properties including an antibacterial effect. Moreover the constituents of aloe vera leaves include lignin, hemicellulose, and pectins which can be used in the reduction of silver ions to produce as AgNPs@aloe vera (AgNPs@AV) with antibacterial activity. Methods: AgNPs were prepared by an eco-friendly hydrothermal method using an aloe vera plant extract solution as both a reducing and stabilizing agent. AgNPs@AV were characterized using XRD and SEM. Additionally, an agar well diffusion method was used to screen for antimicrobial activity. MIC and MBC were used to correlate the concentration of AgNPs@AV its bactericidal effect. SEM was used to investigate bacterial inactivation. Then the toxicity with human cells was investigated using an MTT assay. Results: The synthesized AgNPs were crystalline with sizes of 70.70 ± 22-192.02 ± 53 nm as revealed using XRD and SEM. The sizes of AgNPs can be varied through alteration of times and temperatures used in their synthesis. These AgNPs were investigated for potential use as an antibacterial agent to inhibit pathogenic bacteria. Their antibacterial activity was tested on S. epidermidis and P. aeruginosa. The results showed that AgNPs had a high antibacterial which depended on their synthesis conditions, particularly when processed at 100 oC for 6 h and 200 oC for 12 h. The cytotoxicity of AgNPs was determined using human PBMCs revealing no obvious cytotoxicity. These results indicated that AgNPs@AV can be effectively utilized in pharmaceutical, biotechnological and biomedical applications. Discussion: Aloe vera extract was processed using a green and facile method. This was a hydrothermal method to reduce silver nitrate to AgNPs@AV. Varying the hydrothermal temperature provided the fine spherical shaped nanoparticles. The size of the nanomaterial was affected by its thermal preparation. The particle size of AgNPs could be tuned by varying both time and temperature. A process using a pure AG phase could go to completion in 6h at 200 oC, whereas reactions at lower temperatures required longer times. Moreover, the antibacterial effect of this hybrid nanomaterial was sufficient that it could be used to inhibit pathogenic bacteria since silver release was dependent upon its particle size. The high activity of the largest AgNPs might have resulted from a high concentration of aloe vera compounds incorporated into the AgNPs during hydrothermal synthesis.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yanli Feng ◽  
Tian Deng ◽  
Xiaohua Lai ◽  
Zhihua Feng ◽  
Mingsheng Lyu ◽  
...  

Silver nanoparticles (Ag NPs) have become one of the current research hotspots and are used in many fields such as electrochemistry, energy, bioanalysis, and environmental monitoring, especially in the field of antibacterial research. In this study, we investigated the effect of properties of Ag NPs coated with polar materials. Ag NPs covered by a dispersant that was triethylene glycol monoethyl ether was stable and conquered the aggregation of Ag NPs. The effect of the dispersant on biocompatibility was explored through interaction experiments between Ag NPs and DNA sequence. The coated Ag NPs could adsorb DNA, and the fluorescence of FAM-DNA could be quenched by Ag NPs. The adsorption and desorption experiments of DNA showed that the order of DNA functional groups on the interaction process was phosphate>T>C>A>G. Moreover, we selected marine pathogenic bacteria to test the antibacterial effect of Ag NPs coated with a polar dispersant. The polar material had a certain inhibitory effect on the antibacterial activity of Ag NPs. However, small molecules such as bases could interact on the surface Ag NPs and release Ag+ to perform the antibacterial activity. The results could contribute to the further application of Ag NPs.


Author(s):  
Wilson Mbiti Njue ◽  
Jackson Kilonzo Kithokoi ◽  
Jane Mburu ◽  
Henry Mwangi ◽  
Sauda Swaleh

Metal nanoparticles in the field of nanotechnology are of great interest to modern scientific research due to their size effects, medical uses and, catalytic, electronic and optical properties. Green synthesis of metal nanoparticles is a feasible alternative to chemical methods as it is environmentally friendly and cost effective. In continuation with our research on green synthesis of silver nanoparticles using Kenyan medicinal plants, we here report the synthesis of novel silver nanoparticles (AgNPs) on ultrasonic bath using Adansonia digitata leaves extracts and analysis of their antibacterial activity. The nanoparticles were characterized by UV-Vis, High Resolution Transmission Electron Microscopy (HRTEM), FTIR spectroscopy and Energy Dispersive X-ray (EDX). EDX analysis affirmed the nanoparticles were pure silver. Crystalline nature of the nanoparticles was confirmed by bright circular spots in the Selected Area Electron Diffraction (SAED) in HRTEM image. The AgNPs were spherical with an average size 13 nm. FTIR analysis showed strong –C=C- and –OH stretching bands due to compounds capping the nanoparticles. The synthesized AgNPs showed high inhibition zones of 17.1±0.130 mm towards Gram-negative bacteria E. coli and 12.9±0.082mm towards Gram positive bacteria S. aureus. The aqueous A. digitata extract had no effect on growth inhibition of test bacteria. The study showed that the silver nanoparticles synthesized from the plant’s leaves extract had antibacterial activity against both Gram negative and positive pathogenic bacteria. The nanoparticles can be utilized towards developing novel drugs useful in combating pathogens.


Author(s):  
Patcharaporn Tippayawat ◽  
Nutthakritta Phromviyo ◽  
Parichart Boueroy ◽  
Apiwat Chompoosor

Background: There is worldwide interest in silver nanoparticles (AgNPs) synthesized by various chemical reactions for use in applications exploiting their antibacterial activity, even though these processes exhibit a broad range of toxicity in vertebrates and invertebrates alike. To avoid the chemical toxicity, biosynthesis (green synthesis) of metal nanoparticles is proposed as a cost-effective and environmental friendly alternative. Aloe vera leaf extract is a medicinal agent with multiple properties including an antibacterial effect. Moreover the constituents of aloe vera leaves include lignin, hemicellulose, and pectins which can be used in the reduction of silver ions to produce as AgNPs@aloe vera (AgNPs@AV) with antibacterial activity. Methods: AgNPs were prepared by an eco-friendly hydrothermal method using an aloe vera plant extract solution as both a reducing and stabilizing agent. AgNPs@AV were characterized using XRD and SEM. Additionally, an agar well diffusion method was used to screen for antimicrobial activity. MIC and MBC were used to correlate the concentration of AgNPs@AV its bactericidal effect. SEM was used to investigate bacterial inactivation. Then the toxicity with human cells was investigated using an MTT assay. Results: The synthesized AgNPs were crystalline with sizes of 70.70 ± 22-192.02 ± 53 nm as revealed using XRD and SEM. The sizes of AgNPs can be varied through alteration of times and temperatures used in their synthesis. These AgNPs were investigated for potential use as an antibacterial agent to inhibit pathogenic bacteria. Their antibacterial activity was tested on S. epidermidis and P. aeruginosa. The results showed that AgNPs had a high antibacterial which depended on their synthesis conditions, particularly when processed at 100 oC for 6 h and 200 oC for 12 h. The cytotoxicity of AgNPs was determined using human PBMCs revealing no obvious cytotoxicity. These results indicated that AgNPs@AV can be effectively utilized in pharmaceutical, biotechnological and biomedical applications. Discussion: Aloe vera extract was processed using a green and facile method. This was a hydrothermal method to reduce silver nitrate to AgNPs@AV. Varying the hydrothermal temperature provided the fine spherical shaped nanoparticles. The size of the nanomaterial was affected by its thermal preparation. The particle size of AgNPs could be tuned by varying both time and temperature. A process using a pure AG phase could go to completion in 6h at 200 oC, whereas reactions at lower temperatures required longer times. Moreover, the antibacterial effect of this hybrid nanomaterial was sufficient that it could be used to inhibit pathogenic bacteria since silver release was dependent upon its particle size. The high activity of the largest AgNPs might have resulted from a high concentration of aloe vera compounds incorporated into the AgNPs during hydrothermal synthesis.


Author(s):  
Is Fatimah ◽  
Habibi Hidayat ◽  
Bambang Nugroho ◽  
Saddam Husein

Background: Green synthesis method of nanoparticles has been developed for several years. Besides providing an environmental-friendly process, the green synthesis of nanoparticles using plant extract provides a synergistic effect of the secondary metabolite. In recent times, the study involving the intensification process in nanoparticle formation also attracts great attention. This research deals with the green synthesis of silver nanoparticles using Datura metel flower extract as an antibacterial agent. The use of an ultrasound-assisted method for the synthesis is also investigated in this study. Methods: Synthesis of silver nanoparticles (AgNPs) using Datura metel flower extract under ultrasound-assisted method has been conducted. Evaluation of the successful synthesis was done using UV-visible spectrophotometry, particle size analyzer, x-ray diffraction, and transmission electron microscopy. The prepared AgNPs were tested as antibacterial against S. aureus, K. pneumoniae, S. pyogenes, and E. coli. Results: The ultrasound-assisted synthesis of AgNPs produces particles ranging from 25-70 nm in size; meanwhile, the reflux method demonstrated the size of 50-170 nm. These particle sizes represent the effect of the antibacterial activity as the ultrasound-assisted synthesized Ag NPs have a higher inhibition zone towards all tested bacteria. Subsequently, these data presented the applicability of Ag NPs synthesis using an ultrasound method as a potential candidate for biomedical applications. Conclusion: The profile of UV-Visible spectra and particle size analyses demonstrated the applicability of the ultrasound technique to produce a smaller size of the nanoparticles with higher antibacterial activity.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2589 ◽  
Author(s):  
Patcharaporn Tippayawat ◽  
Nutthakritta Phromviyo ◽  
Parichart Boueroy ◽  
Apiwat Chompoosor

BackgroundThere is worldwide interest in silver nanoparticles (AgNPs) synthesized by various chemical reactions for use in applications exploiting their antibacterial activity, even though these processes exhibit a broad range of toxicity in vertebrates and invertebrates alike. To avoid the chemical toxicity, biosynthesis (green synthesis) of metal nanoparticles is proposed as a cost-effective and environmental friendly alternative. Aloe vera leaf extract is a medicinal agent with multiple properties including an antibacterial effect. Moreover the constituents of aloe vera leaves include lignin, hemicellulose, and pectins which can be used in the reduction of silver ions to produce as AgNPs@aloe vera (AgNPs@AV) with antibacterial activity.MethodsAgNPs were prepared by an eco-friendly hydrothermal method using an aloe vera plant extract solution as both a reducing and stabilizing agent. AgNPs@AV were characterized using XRD and SEM. Additionally, an agar well diffusion method was used to screen for antimicrobial activity. MIC and MBC were used to correlate the concentration of AgNPs@AV its bactericidal effect. SEM was used to investigate bacterial inactivation. Then the toxicity with human cells was investigated using an MTT assay.ResultsThe synthesized AgNPs were crystalline with sizes of 70.70 ± 22-192.02 ± 53 nm as revealed using XRD and SEM. The sizes of AgNPs can be varied through alteration of times and temperatures used in their synthesis. These AgNPs were investigated for potential use as an antibacterial agent to inhibit pathogenic bacteria. Their antibacterial activity was tested onS. epidermidisandP. aeruginosa. The results showed that AgNPs had a high antibacterial which depended on their synthesis conditions, particularly when processed at 100oC for 6 h and 200oC for 12 h. The cytotoxicity of AgNPs was determined using human PBMCs revealing no obvious cytotoxicity. These results indicated that AgNPs@AV can be effectively utilized in pharmaceutical, biotechnological and biomedical applications.DiscussionAloe vera extract was processed using a green and facile method. This was a hydrothermal method to reduce silver nitrate to AgNPs@AV. Varying the hydrothermal temperature provided the fine spherical shaped nanoparticles. The size of the nanomaterial was affected by its thermal preparation. The particle size of AgNPs could be tuned by varying both time and temperature. A process using a pure AG phase could go to completion in 6 h at 200oC, whereas reactions at lower temperatures required longer times. Moreover, the antibacterial effect of this hybrid nanomaterial was sufficient that it could be used to inhibit pathogenic bacteria since silver release was dependent upon its particle size. The high activity of the largest AgNPs might have resulted from a high concentration of aloe vera compounds incorporated into the AgNPs during hydrothermal synthesis.


Author(s):  
Gowri Shankar Krishnan ◽  
Namrata Pradhan ◽  
Masilamani K ◽  
Albin T Fleming

ABSTRACTObjective: In this study, silver nanoparticles (SNPs) were synthesized using an aqueous extract of Trainthema portulacastrum and silver ions (Ag+)which have been proven against certain pathogenic bacterial strains and hepatocellular carcinoma (HepG2) cell line.Methods: The bio fabricated nanoparticles were confirmed by surface plasmon resonance which were characterized by biophysical measuresutilizing the ultraviolet-visible spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray, and transmission electron microscope(TEM), Fourier transform infrared spectroscopy, particle size analyzer, and X-ray diffraction. Antibacterial efficacy against Enterobacter aerogens,Proteus mirabilis, Escherichia coli, Staphylococcus epidermis, and Bacillus subtilis. The effect of SNPs tested against HepG2 and NIH/3T3 cell lineexhibits a dose-dependent toxicity.Results and Conclusion: The SEM and TEM images confirmed the presence of spherical and hexagonal shape (0.3-4 μm) of nanocrystalline particleswith the size range of 11.5-29.2 nm. The average particles size of SNPs is 190.3±17.0 nm. Antibacterial activity was carried out by agar well diffusionmethod against different pathogenic bacteria of which B. subtilis showed a significant zone of inhibition 8.66 mm and 12.0 mm for aqueous plantextract and synthesized SNPs. The effect of SNPs tested against HepG2 and NIH/3T3 cell line exhibits a dose-dependent toxicity. In case of HepG2, thecell viability was decreased to 50% (IC50) at the concentration of 173.8±0.84 μg/mL. From the results, it can be concluded that the SNPs fabricatedusing green synthesis method will be a promising candidate in the biomedical field, due to its high bioactive properties.Keywords: Silver nanoparticles, Trainthema portulacastrum, Antibacterial activity, Cytotoxic activity.


2021 ◽  
Vol 59 (2) ◽  
pp. 214
Author(s):  
Dung Ngo Thanh ◽  
Nguyet Ha Minh ◽  
Tam Le Thi Thanh ◽  
Lu Le Trong

In this study, silver nanoparticles were synthesized from aqueous silver nitrate through a simple and eco-friendly route using a combination of two reducing agents: sodium citrate and tannic acid. By this method, the obtained Ag nanoparticles (NPs) were stable within the studied period of six months. Besides, both TEM images and UV-Vis results showed that the size of silver NPs could be controlled by changing the concentration of tannic acid. The antibacterial ability of Ag NPs with different sizes were also examined. In detail, the smaller the Ag NPs were, the more efficient their antibacterial activity was.


Sign in / Sign up

Export Citation Format

Share Document