scholarly journals Functional Characterization of Target of Rapamycin Signaling in Verticillium dahliae

2019 ◽  
Vol 10 ◽  
Author(s):  
Linxuan Li ◽  
Tingting Zhu ◽  
Yun Song ◽  
Xiumei Luo ◽  
Li Feng ◽  
...  
Gene ◽  
2017 ◽  
Vol 626 ◽  
pp. 386-394 ◽  
Author(s):  
Yulin Fang ◽  
Dianguang Xiong ◽  
Longyan Tian ◽  
Chen Tang ◽  
Yonglin Wang ◽  
...  

Endocrinology ◽  
2011 ◽  
Vol 152 (6) ◽  
pp. 2133-2140 ◽  
Author(s):  
Shoulei Jiang ◽  
Patricia L. M. Dahia

Characterization of the entire spectrum of cancer-associated genetic disruptions is an overarching goal of contemporary and future oncology and can inform on patient diagnosis, treatment, and surveillance. Hereditary endocrine tumors, by having the potential to reveal the cancer's primary molecular defect, have been especially informative in this realm. Within this group, pheochromocytomas and paragangliomas, neural crest-derived, catecholamine-secreting tumors have come to represent true conduits for gene discovery. About one-third of pheochromocytomas and paragangliomas are now known to result from germline mutations in one of at least eight genes that belong to a variety of functional classes. Greater understanding of the molecular signals transduced by these genes and their respective mutants has advanced our understanding of kinase signaling pathways, hypoxia regulation, and the link between metabolic disruptions and cell growth. A new susceptibility gene without homology to other functional classes has been recently identified and encodes for a three-spanner transmembrane protein, transmembrane protein 127 (TMEM127). Initial insights from in vitro and patient data suggest that this candidate tumor suppressor is linked to the endosomal system and the mechanistic target of rapamycin [formerly mammalian target of rapamycin (mTOR)] pathway, and that mutation carriers often have clinical features that are typically associated with sporadic forms of pheochromocytoma. Functional characterization of transmembrane protein 127 (TMEM127) and discovery of additional pheochromocytoma/paraganglioma susceptibility genes is likely to shed light on our understanding of these tumors and extend these insights to other cancers.


2014 ◽  
Vol 65 (22) ◽  
pp. 6679-6692 ◽  
Author(s):  
Lian Xu ◽  
Wenwen Zhang ◽  
Xin He ◽  
Min Liu ◽  
Kun Zhang ◽  
...  

2020 ◽  
Vol 477 (7) ◽  
pp. 1261-1286 ◽  
Author(s):  
Marie Anne Richard ◽  
Hannah Pallubinsky ◽  
Denis P. Blondin

Brown adipose tissue (BAT) has long been described according to its histological features as a multilocular, lipid-containing tissue, light brown in color, that is also responsive to the cold and found especially in hibernating mammals and human infants. Its presence in both hibernators and human infants, combined with its function as a heat-generating organ, raised many questions about its role in humans. Early characterizations of the tissue in humans focused on its progressive atrophy with age and its apparent importance for cold-exposed workers. However, the use of positron emission tomography (PET) with the glucose tracer [18F]fluorodeoxyglucose ([18F]FDG) made it possible to begin characterizing the possible function of BAT in adult humans, and whether it could play a role in the prevention or treatment of obesity and type 2 diabetes (T2D). This review focuses on the in vivo functional characterization of human BAT, the methodological approaches applied to examine these features and addresses critical gaps that remain in moving the field forward. Specifically, we describe the anatomical and biomolecular features of human BAT, the modalities and applications of non-invasive tools such as PET and magnetic resonance imaging coupled with spectroscopy (MRI/MRS) to study BAT morphology and function in vivo, and finally describe the functional characteristics of human BAT that have only been possible through the development and application of such tools.


1998 ◽  
Vol 79 (01) ◽  
pp. 177-185 ◽  
Author(s):  
Ashia Siddiqua ◽  
Michael Wilkinson ◽  
Vijay Kakkar ◽  
Yatin Patel ◽  
Salman Rahman ◽  
...  

SummaryWe report the characterization of a monoclonal antibody (MAb) PM6/13 which recognises glycoprotein IIIa (GPIIIa) on platelet membranes and in functional studies inhibits platelet aggregation induced by all agonists examined. In platelet-rich plasma, inhibition of aggregation induced by ADP or low concentrations of collagen was accompanied by inhibition of 5-hydroxytryptamine secretion. EC50 values were 10 and 9 [H9262]g/ml antibody against ADP and collagen induced responses respectively. In washed platelets treated with the cyclooxygenase inhibitor, indomethacin, PM6/13 inhibited platelet aggregation induced by thrombin (0.2 U/ml), collagen (10 [H9262]g/ml) and U46619 (3 [H9262]M) with EC50 = 4, 8 and 4 [H9262]g/ml respectively, without affecting [14C]5-hydroxytryptamine secretion or [3H]arachidonate release in appropriately labelled cells. Studies in Fura 2-labelled platelets revealed that elevation of intracellular calcium by ADP, thrombin or U46619 was unaffected by PM6/13 suggesting that the epitope recognised by the antibody did not influence Ca2+ regulation. In agreement with the results from the platelet aggregation studies, PM6/13 was found to potently inhibit binding of 125I-fibrinogen to ADP activated platelets. Binding of this ligand was also inhibited by two other MAbs tested, namely SZ-21 (also to GPIIIa) and PM6/248 (to the GPIIb-IIIa complex). However when tested against binding of 125I-fibronectin to thrombin stimulated platelets, PM6/13 was ineffective in contrast with SZ-21 and PM6/248, that were both potent inhibitors. This suggested that the epitopes recognised by PM6/13 and SZ-21 on GPIIIa were distinct. Studies employing proteolytic dissection of 125I-labelled GPIIIa by trypsin followed by immunoprecipitation with PM6/13 and analysis by SDS-PAGE, revealed the presence of four fragments at 70, 55, 30 and 28 kDa. PM6/13 did not recognize any protein bands on Western blots performed under reducing conditions. However Western blotting analysis with PM6/13 under non-reducing conditions revealed strong detection of the parent GP IIIa molecule, of trypsin treated samples revealed recognition of an 80 kDa fragment at 1 min, faint recognition of a 60 kDa fragment at 60 min and no recognition of any product at 18 h treatment. Under similar conditions, SZ-21 recognized fragments at 80, 75 and 55 kDa with the 55kDa species persisting even after 18 h trypsin treatment. These studies confirm the epitopes recognised by PM6/13 and SZ-21 to be distinct and that PM6/13 represents a useful tool to differentiate the characteristics of fibrinogen and fibronectin binding to the GPIIb-IIIa complex on activated platelets.


Sign in / Sign up

Export Citation Format

Share Document